③抛物线上有两点P(x1 , y1)和Q(x2 , y2),若x1<1<x2 , 且x1+x2>2,则y1>y2;
④点C关于抛物线对称轴的对称点为E , 点G , F分别在x轴和y轴上,当m=2时,四边形EDFG周长的最小值为 . 其中真命题的序号是( )
x | … | -1 | 0 | 1 | 2 | … |
y | … | m | 2 | 2 | n | … |
且当时,对应的函数值有以下结论:;;关于的方程的负实数根在和之间;和在该二次函数的图象上,则当实数时, .
其中正确的结论是( )
综合与实践数学活动课上,张老师给出了一个问题:
已知二次函数y=x2+2x-3,当-2≤x≤2时,y的取值范围为;
①小伟同学经过分析后,将原二次函数配方成y=a(x-h)2+k
形式,确定抛物线对称轴为直线x=h , 通过-2、h和2的大小
关系,分别确定了最大值和最小值,进而求出y的取值范围;
②小军同学画出如图的函数图象,通过观察图象确定了y的取值范围;请你根据上述两名同学的分析写出y的取值范围是;
张老师发现两名同学分别从“数”和“形”的角度分析、解决问题,为了让同学们更好感悟“数形结合”思想,张老师将前面问题变式为下面问题,请你解答:已知二次函数y=-x2+2x-3,当-2≤x≤2时,求y的取值范围;
已知二次函数y=-x2+6x-5,当a≤x≤a+3时,二次函数的最大值为y1 , 最小值为y2 , 若y1-y2=3,求a的值.
【举例】已知点在函数图象上.点的“纵横值”为;函数图象上所有点的“纵横值”可以表示为 , 当时,的最大值为 , 所以函数的“最优纵横值”为7.
【问题】根据定义,解答下列问题:
②求出函数的“最优纵横值”;