当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

北京市东城区2016届九年级上学期数学期末考试试卷

更新时间:2018-01-24 浏览次数:429 类型:期末考试
一、单选题
二、填空题
三、解答题
  • 15. (2016九上·东城期末) 阅读下面材料:

    在数学课上,老师提出如:下问题

    尺规作图:过圆外一点作园的切线

    已知:圆O和点P

    求作:过点P的圆O的切线

    小涵的主要作法如下:

    如图:①连接OP,作线段OP的中点A

    ②以A为圆心,OA长为半径作圆,交圆O于点B,C

    ③作直线PB和PC

    所以PB和PC就是所求的切线

    老师说:“小涵的作法正确.”

    请回答:小涵的作图依据是

  • 17. (2023·金华模拟) 如图,△ABC中,D为BC 上一点,∠BAD=∠C,AB=6, BD=4,求CD的长.

  • 18. (2016九上·东城期末) 已知:抛物线y=x2+(2m-1)x+m2-1经过坐标原点,且当x<0时,y随x的增大而减小.
    1. (1) 求抛物线的解析式;
    2. (2) 结合图象写出y<0时,对应的x的取值范围;
    3. (3) 设点A是该抛物线上位于x轴下方的一个动点,过点A作x轴的平行线交抛物线于另一点D,再作AB⊥x轴于点B,DC⊥x轴于点C.当BC=1时,直接写出矩形ABCD的周长.
  • 19. (2016九上·东城期末) 列方程或方程组解应用题:

    某公司在2013年的盈利额为200万元,预计2015年的盈利额将达到242万元,若每年比上一年盈利额增长的百分率相同,求该公司这两年盈利额的年平均增长率是多少?

  • 20. (2016九上·东城期末) 如图,在方格网中已知格点△ABC和点O.

    1. (1) 画△A′B′C′,使它和△ABC关于点O成中心对称;
    2. (2) 请在方格网中标出所有的D 点,使以点A,O,C′,D为顶点的四边形是平行四边形.
  • 21. (2016九上·东城期末) 石头剪子布,又称“猜丁壳”,是一种起源于中国流传多年的猜拳游戏.游戏时的各方每次用一只手做“石头”、“剪刀”、“布”三种手势中的一种,规定“石头”胜“剪刀”、“剪刀”胜“布”、“布”胜“石头” .两人游戏时,若出现相同手势,则不分胜负游戏继续,直到分出胜负,游戏结束.三人游戏时,若三种手势都相同或都不相同,则不分胜负游戏继续;若出现两人手势相同,则视为一种手势与第三人所出手势进行对决,此时,参照两人游戏规则.例如甲、乙二人同时出石头,丙出剪刀,则甲、乙获胜.假定甲、乙、丙三人每次都是随机地做这三种手势,那么:
    1. (1) 直接写出一次游戏中甲、乙两人出第一次手势时,不分胜负的概率;
    2. (2) 请你画出树状图求出一次游戏中甲、乙、丙三人出第一次手势时,   不分胜负的概率.
  • 22. (2016九上·东城期末) 如图,△ABC 中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.

    1. (1) 求证:DF是⊙O的切线;
    2. (2) 若 ,半径OA=3,求AE的长.
  • 23. (2016九上·东城期末) 如图所示,某数学活动小组要测量山坡上的电线杆PQ的高度.他们采取的方法是:先在地面上的点A处测得杆顶端点P的仰角是45°,再向前走到B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°,这时只需要测出AB的长度就能通过计算求出电线杆PQ的高度.你同意他们的测量方案吗?若同意,画出计算时的图形,简要写出计算的思路,不用求出具体值;若不同意,提出你的测量方案,并简要写出计算思路.

     


  • 24. (2016九上·东城期末) 请阅读下面材料,并回答所提出的问题.三角形内角平分线定理:三角形的内角平分线分对边所得的两条线段和这个角的两边对应成比例.

    已知:如图,△ABC中, AD是角平分线.

    求证:

    证明:过C作CE∥DA,交BA的延长线于E.

    . ①

     AD是角平分线,

    .      ②

    .       ③

    1. (1) 上述证明过程中,步骤①②③处的理由是什么?(写出两条即可)
    2. (2) 用三角形内角平分线定理解答:已知,△ABC中,AD是角平分线,AB=7cm,AC=4cm,BC=6cm,求BD的长;

    3. (3) 我们知道如果两个三角形的高相等,那么它们面积的比就等于底的比.请你通过研究△ABD和△ACD面积的比来证明三角形内角平分线定理.
  • 25. (2016九上·东城期末) 在平面直角坐标系xOy中,抛物线y=mx2-8mx+16m-1(m>0)与x轴的交点分别为A(x1 , 0),B(x2 , 0).
    1. (1) 求证:抛物线总与x轴有两个不同的交点;
    2. (2) 若AB=2,求此抛物线的解析式.
    3. (3) 已知x轴上两点C(2,0),D(5,0),若抛物线y=mx2-8mx+16m-1(m>0)与线段CD有交点,请写出m的取值范围.
  • 26. (2016九上·东城期末) 已知:在等边△ABC中, AB= ,D,E分别是AB,BC的中点(如图1).若将△BDE绕点B逆时针旋转,得到△BD1E1 , 设旋转角为α(0°<α<180°),记射线CE1与AD1的交点为P.

    1. (1) 判断△BDE的形状;
    2. (2) 在图2中补全图形,

      ①猜想在旋转过程中,线段CE1与AD1的数量关系并证明;

      ②求∠APC的度数;

    3. (3) 点P到BC所在直线的距离的最大值为.(直接填写结果)
  • 27. (2016九上·东城期末) 已知两个函数,如果对于任意的自变量x,这两个函数对应的函数值记为y1 , y2 , 都有点(x,y1)、(x,y2)关于点(x,x)对称,则称这两个函数为关于y=x的对称函数.例如, 为关于y=x的对称函数.
    1. (1) 判断:① ;② ;③ ,其中为关于y=x的对称函数的是(填序号).
    2. (2) 若 )为关于y=x的对称函数.

      ①求k、b的值.

      ②对于任意的实数x,满足x>m时, 恒成立,则m满足的条件为

    3. (3) 若   为关于y=x的对称函数,且对于任意的实数x,都有 ,请结合函数的图象,求n的取值范围.

微信扫码预览、分享更方便

试卷信息