当前位置: 初中数学 / 实践探究题
  • 1. (2023·兰州) 综合与实践

    1. (1) 问题探究:如图1是古希腊数学家欧几里得所著的《几何原本》第1卷命题9:“平分一个已知角.”即:作一个已知角的平分线,如图2是欧几里得在《几何原本》中给出的角平分线作图法:在上分别取点C和D,使得 , 连接 , 以为边作等边三角形 , 则就是的平分线.

          

      请写出平分的依据:

    2. (2) 类比迁移:

      小明根据以上信息研究发现:不一定必须是等边三角形,只需即可.他查阅资料:我国古代已经用角尺平分任意角.做法如下:如图3,在的边上分别取 , 移动角尺,使角尺两边相同刻度分别与点M,N重合,则过角尺顶点C的射线的平分线,请说明此做法的理由;

    3. (3) 拓展实践: 

      小明将研究应用于实践.如图4,校园的两条小路 , 汇聚形成了一个岔路口A,现在学校要在两条小路之间安装一盏路灯E,使得路灯照亮两条小路(两条小路一样亮),并且路灯E到岔路口A的距离和休息椅D到岔路口A的距离相等.试问路灯应该安装在哪个位置?请用不带刻度的直尺和圆规在对应的示意图5中作出路灯E的位置.(保留作图痕迹,不写作法)

微信扫码预览、分享更方便