当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

江苏省扬州市江都区邵樊片2018届数学中考二模试卷

更新时间:2024-07-13 浏览次数:388 类型:中考模拟
一、单选题
二、填空题
三、解答题
  • 19. (2018·江都模拟)                                               
    1. (1) 计算:
    2. (2) 解不等式组:
  • 20. (2022八上·新泰期末) 先化简,再求值: ,其中-2 x 2,请从x的范围中选入一个你喜欢的值代入,求此分式的值.
  • 21. (2018·江都模拟) 某区教育局为了解今年九年级学生体育测试情况,随机抽查了某班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:

    说明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下

    1. (1) 样本中D级的学生人数占全班学生人数的百分比是
    2. (2) 扇形统计图中A级所在的扇形的圆心角度数是
    3. (3) 请把条形统计图补充完整;
    4. (4) 若该校九年级有500名学生,请你用此样本估计体育测试中A级和B级的学生人数之和.
  • 22. (2018·江都模拟) 聪聪参加我市电视台组织的“阳光杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有 个选项,第二道单选题有4个选项,这两道题聪聪都不会,不过聪聪还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).
    1. (1) 如果聪聪两次“求助”都在第一道题中使用,那么聪聪通关的概率是
    2. (2) 如果聪聪将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.
  • 23. (2024九上·龙岗开学考) 如图:在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了), 连接EF.

    1. (1) 求证:四边形ABEF为菱形;
    2. (2) AE,BF相交于点O,若BF=6,AB=5,求AE的长.
  • 24. (2018·江都模拟) 几个小伙伴打算去音乐厅观看演出,他们准备用350元购买门票.下面是两个小伙伴的对话:小芳:今天看演出,如果我们每人一张票,会差两张票的钱.

    小明:过两天就是“儿童节”了,到时票价会打七折,我们每人一张票,还能剩35元钱呢!根据对话的内容,请你求出小伙伴们的人数.

  • 25. (2018·江都模拟) 有一只拉杆式旅行箱(图1),其侧面示意图如图2所示.已知箱体长AB=50cm,拉杆 的伸长距离最大时可达35cm,点A,B,C在同一条直线上.在箱体底端装有圆形的滚轮⊙A,⊙A与水平地面MN相切于点D.在拉杆伸长至最大的情况下,当点B距离水平地面38cm时,点C到水平地面的距离CE为59cm.

    设AF∥MN.

    1. (1) 求⊙A的半径长;
    2. (2) 当人的手自然下垂拉旅行箱时,人感到较为舒服.某人将手自然下垂在C端拉旅行箱时,CE为80cm, =64°.求此时拉杆BC的伸长距离.(精确到1cm,参考数据:
  • 26. (2018·江都模拟) 如图,四边形 是矩形,点 是对角线 上一动点(不与  重合),连接 ,过点 ,交射线 于点 ,已知 .

    1. (1) 求 的值;
    2. (2) 当 是以PC为底的等腰三角形时.请求出AP的值;
  • 27. (2018·江都模拟) 对于⊙P及一个矩形给出如下定义:如果⊙P上存在到此矩形四个顶点距离都相等的点,那么称⊙P是该矩形的“等距圆”.如图,在平面直角坐标系xOy中,矩形ABCD的顶点A的坐标为( ),顶点C、D在x轴上,且OC=OD.


    1. (1) 当⊙P的半径为4时,

      ①在P1 ),P2 ),P3 )中可以成为矩形ABCD的“等距圆”的圆心的是

      ②如果点P在直线 上,且⊙P是矩形ABCD的“等距圆”,求点P的坐标

    2. (2) 已知点P在 轴上,且⊙P是矩形ABCD的“等距圆”,如果⊙P与直线AD没有公共点,直接写出点P的纵坐标m的取值范围.  (2)点P在y上,且⊙P是矩形ABCD的“等距圆”,且⊙P与直线AD没有公共点,得出|m-1|< ,且|m-1|≠0,求解即可得出m的取值范围,即点P的纵坐标的取值范围
  • 28. (2018·江都模拟) 如图,在平面直角坐标系xOy中,抛物线 轴交于点A(-3,0),C(1,0),与 轴交于点B.

    1. (1) 求此抛物线的解析式;
    2. (2) 点P是直线AB上方的抛物线上一动点(不与点A,B重合),过点P作 轴的垂线,垂足交点为F,交直线AB于点E,作 于点D.

      ①点P在什么位置时,△PDE的周长最大,求出此时P点的坐标;

      ②连接PA,以PA为边作正方形APMN,当顶点M或N恰好落在抛物线对称轴上时,求出对应的P点的坐标.

微信扫码预览、分享更方便

试卷信息