当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

山东省济宁市2018年中考数学试卷

更新时间:2024-07-13 浏览次数:1020 类型:中考真卷
一、选择题:
二、填空题
三、解答题
  • 16. (2018·济宁) 化简:(y+2)(y﹣2)﹣(y﹣1)(y+5)
  • 17. (2021九上·长沙期末) 某校开展研学旅行活动,准备去的研学基地有A(曲阜)、B(梁山)、C(汶上),D(泗水),每位学生只能选去一个地方,王老师对本全体同学选取的研学基地情况进行调查统计,绘制了两幅不完整的统计图(如图所示).

    1. (1) 求该班的总入数,并补全条形统计图.
    2. (2) 求D(泗水)所在扇形的圆心角度数;
    3. (3) 该班班委4人中,1人选去曲阜,2人选去梁山,1人选去汶上,王老师要从这4人中随机抽取2人了解他们对研学基地的看法,请你用列表或画树状图的方法,求所抽取的2人中恰好有1人选去曲阜,1人选去梁山的概率.
  • 18. (2018·济宁) 在一次数学活动课中,某数学小组探究求环形花坛(如图所示)面积的方法,现有以下工具;①卷尺;②直棒EF;③T型尺(CD所在的直线垂直平分线段AB).

    1. (1) 在图1中,请你画出用T形尺找大圆圆心的示意图(保留画图痕迹,不写画法);
    2. (2) 如图2,小华说:“我只用一根直棒和一个卷尺就可以求出环形花坛的面积,具体做法如下:

      将直棒放置到与小圆相切,用卷尺量出此时直棒与大圆两交点M,N之间的距离,就可求出环形花坛的面积”如果测得MN=10m,请你求出这个环形花坛的面积.

  • 19. (2018·济宁) “绿水青山就是金山银山”,为保护生态环境,A,B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:

    1. (1) 若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的

      人均支出费用各是多少元;

    2. (2) 在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?
  • 20. (2020九上·上海月考) 如图,在正方形ABCD中,点E,F分别是边AD,BC的中点,连接DF,过点E作EH⊥DF,垂足为H,EH的延长线交DC于点G.

    1. (1) 猜想DG与CF的数量关系,并证明你的结论;
    2. (2) 过点H作MN∥CD,分别交AD,BC于点M,N,若正方形ABCD的边长为10,点P是MN上一点,求△PDC周长的最小值.
  • 21. (2018·济宁) 知识背景,当a>0且x>0时,因为 ,所以 ,从而

    (当x= 时取等号).

    设函数y=x+ (a>0,x>0),由上述结论可知:当x= 时,该函数有最小值为2

    应用举例

    已知函数为y1=x(x>0)与函数 (x>0),则当x= =2时,y1+y2=x+ 有最小值为2 =4.

    解决问题

    1. (1) 已知函数为y1=x+3(x>﹣3)与函数y2=(x+3)2+9(x>﹣3),当x取何值时, 有最小值?最小值是多少?
    2. (2) 已知某设备租赁使用成本包含以下三部分:一是设备的安装调试费用,共490元;二是设备的租赁使用费用,每天200元;三是设备的折旧费用,它与使用天数的平方成正比,比例系数为0.001.若设该设备的租赁使用天数为x天,则当x取何值时,该设备平均每天的租货使用成本最低?最低是多少元?
  • 22. (2022九上·绵竹期末) 如图,已知抛物线y=ax2+bx+c(a≠0)经过点A(3,0),B(﹣1,0),C(0,﹣3).

    1. (1) 求该抛物线的解析式;
    2. (2) 若以点A为圆心的圆与直线BC相切于点M,求切点M的坐标;
    3. (3) 若点Q在x轴上,点P在抛物线上,是否存在以点B,C,Q,P为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.

微信扫码预览、分享更方便

试卷信息