当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

陕西省西安未央区2019届九年级上学期数学期末考试试卷

更新时间:2024-07-13 浏览次数:440 类型:期末考试
一、选择题
二、填空题。
三、解答题
    1. (1) ( -2)0+|2- |+2cos30°;
    2. (2) 6tan230°- sin60°-2cos45°.
  • 17. (2019九上·未央期末) 如图,在等腰△ABC巾,AD是顶角∠BAC的角平分线,BE是腰AC边上的高,垂足为点E,求证:△ACD∽△BCE.

  • 18. (2019九上·未央期末) 如图,是由一些棱长为单位1的相同的小正方体组合成的简单几何体.

    1. (1) 图中有个小正方体;
    2. (2) 请在图右侧方格中分别画出几何体的主视图和左视图
  • 19. (2019九上·未央期末) 如图所示,某体育场内一看台AB=10 米,高BC=5 米,A,B两点正前方有垂直丁地面的旗杆DE,存A,B两点处用仪器测量旗杆顶端E的仰角分别为60°和15°(仰角即视线与水平线的夹角).

    1. (1) 求旗杆DE的高度;
    2. (2) 已知旗杆上有一面旗存离地面1米的F点处,这面旗以0.5米/秒的速度匀速上升,求这面旗到达旗杆顶端需要多少秒?
  • 20. (2019九上·未央期末) 如图,已知在正方形ABCD巾,点E足BC边上一点,F为AB延长线上一点,且BE=BF,连接AE、EF、CF.

    1. (1) 若∠BAE=18°,求∠EFC的度数;
    2. (2) 求证:AE⊥CF.
  • 21. (2019九上·未央期末) 如图,一块材料的形状是锐角三角形ABC,边BC长13cm,BC边上的高AD为6 cm,把它加上成正方形零件,使正方形的一边在BC上,其余两个顶点分别存AB、AC上.

    1. (1) 求证:△AEF∽△ABC;
    2. (2) 求这个正方形零件的边长.
  • 22. (2019九上·未央期末) 盒中有若干枚黑球和白球,这些球除颜色外尤其他差别,现让学生进行摸球试验:每次摸m一个球,记下颜色后放回摇匀.重复进行这样的试验得到以下数据:

    摸球的次数n

    100

    200

    300

    500

    800

    1000

    摸到白球的次数m

    38

    79

    121

    196

    322

    398

    摸到白球的频率 (精确到0.001)

    0.380

    0.395

    0.403

    0.392

    0.403

    0.398

    1. (1) 根据表中数据估计,从盒巾摸出一个球是白球的概率是;(精确到0.01)
    2. (2) 若盒中黑球与白球共有5枚,某同学连续不放回地摸出两个球,用树状图或表格计算这两个球颜色不同的概率.
  • 23. (2019九上·未央期末) 如图,一次函数y=kx+b的图象与反比例函数y= 的图象相交于A(m,4)、B(2,-6)两点,过A作AC⊥x轴交于点C,连接OA.

    1. (1) 分别求出一次函数与反比例函数的表达式;
    2. (2) 若直线AB上有一点M,连接MC,且满足S△AMC=3S△AOC , 求点M的坐标.
  • 24. (2019九上·未央期末) 如图,抛物线y=ax2+bx+3与x轴交于点A(-1,0),B(3,0),与y轴交于点C,连接BC.

    1. (1) 求抛物线的表达式;
    2. (2) 求抛物线的顶点式并写出对称轴和顶点坐标;
    3. (3) 抛物线上是否存在点M,使得△MBC的面积与△OBC的面积相等,若存在,请写出点M的坐标;若小存在,请说明理由.
  • 25. (2019九上·未央期末) 如图,在矩形ABCD中,AB=10m,BC=24m,动点P以2 m/s的速度从A点出发,沿AC向C点移动,同时动点p以1m/s的速度从C点出发,沿CB向B点移动,设P、Q两点移动的时间为t秒.(0<t<13)

    1. (1) t为多少时,以P、Q、C为顶点的三角形与△ABC相似?
    2. (2) 探究:在P、Q两点移动过程中,四边形ABQP与△CPQ的面积能否相等?若能,求出此时t的值;若不能,请说明理由.

微信扫码预览、分享更方便

试卷信息