当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省衢州市2019年中考数学试卷

更新时间:2024-07-13 浏览次数:1121 类型:中考真卷
一、选择题(本题有10小题,每小题3分,共30分)
二、填空题(本题共有6小题,每小题4分,共24分)
三、解答题(本题共有8小题,第17~19小题每小题6分,第20-21小题每小题8分,第22~23小题每小题10分,第24小题12分,共66分。请务必写出解答过程)
  • 18. (2021·贡井模拟) 已知:如图,在菱形ABCD中,点E,F分别在边BC,CD上,且BE=DF,连结AE,AF.求证:AE=AF.

  • 19. (2019·衢州) 如图,在4×4的方格子中,△ABC的三个顶点都在格点上,

    1. (1) 在图1中画出线段CD,使CD⊥CB,其中D是格点,
    2. (2) 在图2中画出平行四边形ABEC,其中E是格点.
  • 20. (2019·衢州) 某校为积极响应“南孔圣地,衢州有礼”城市品牌建设,在每周五下午第三节课开展了丰富多彩的走班选课活动。其中综合实践类共开设了“礼行”“礼知”“礼思”“礼艺”“礼源”等五门课程,要求全校学生必须参与其中一门课程。为了解学生参与综合实践类课程活动情况,随机抽取了部分学生进行调查,根据调查结果绘制了如图所示不完整的条形统计图和扇形统计图。

    1. (1) 请问被随机抽取的学生共有多少名?并补全条形统计图。
    2. (2) 在扇形统计图中,求选择“礼行”课程的学生人数所对应的扇形圆心角的度数。
    3. (3) 若该校共有学生1200人,估计其中参与“礼源”课程的学生共有多少人?
  • 21. (2019·衢州) 如图,在等腰△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作DE⊥AB,垂足为E.

    1. (1) 求证:DE是⊙O的切线.
    2. (2) 若DE= ,∠C=30°,求 的长。
  • 22. (2020·成华模拟) 某宾馆有若干间标准房,当标准房的价格为200元时,每天入住的房间数为60间,经市场调查表明,该宾馆每间标准房的价格在170~240元之间(含170元,240元)浮动时,每天入住的房间数y(间)与每间标准房的价格x(元)的数据如下表:

    x(元)

    190

    200

    210

    220

    y(间)

    65

    60

    55

    50

    1. (1) 根据所给数据在坐标系中描出相应的点,并画出图象。
    2. (2) 求y关于x的函数表达式、并写出自变量x的取值范围.
    3. (3) 设客房的日营业额为w(元)。若不考虑其他因素,问宾馆标准房的价格定为多少元时。客房的日营业额最大?最大为多少元?
  • 23. (2019·衢州) 定义:在平面直角坐标系中,对于任意两点A(a,b),B(c,d),若点T(x,y)满足x= ,y= ,那么称点T是点A,B的融合点。

    例如:A(-1,8),B(4,-2),当点T(x,y)满是x= =1,y= =2时,则点T(1,2)是点A,B的融合点,

    1. (1) 已知点A(-1,5),B(7,7),C(2,4),请说明其中一个点是另外两个点的融合点。
    2. (2) 如图,点D(3,0),点E(t,2t+3)是直线l上任意一点,点T(x,y)是点D,E的融合点。

      ①试确定y与x的关系式。

      ②若直线ET交x轴于点H,当△DTH为直角三角形时,求点E的坐标。

  • 24. (2019·衢州) 如图,在Rt△ABC中,∠C=90°,AC=6,∠BAC=60°,AD平分∠BAC交BC于点D,过点D作DE∥AC交AB于点E,点M是线段AD上的动点,连结BM并延长分别交DE,AC于点F、G。


    1. (1) 求CD的长。
    2. (2) 若点M是线段AD的中点,求 的值。
    3. (3) 请问当DM的长满足什么条件时,在线段DE上恰好只有一点P,使得∠CPG=60°?

微信扫码预览、分享更方便

试卷信息