当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2017年浙江省温州市中考数学试卷

更新时间:2017-07-24 浏览次数:2256 类型:中考真卷
一、选择题
二、填空题
三、解答题
  • 17. (2017·温州) 计算题
    1. (1) 计算:2×(﹣3)+(﹣1)2+
    2. (2) 化简:(1+a)(1﹣a)+a(a﹣2).
  • 18. (2022八上·孝昌期末)

    如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.


    1. (1) 求证:△ABC≌△AED;

    2. (2) 当∠B=140°时,求∠BAE的度数.

  • 19. (2020·温州模拟)

    为培养学生数学学习兴趣,某校七年级准备开设“神奇魔方”、“魅力数独”、“数学故事”、“趣题巧解”四门选修课(每位学生必须且只选其中一门).


    1. (1) 学校对七年级部分学生进行选课调查,得到如图所示的统计图.根据该统计图,请估计该校七年级480名学生选“数学故事”的人数.

    2. (2) 学校将选“数学故事”的学生分成人数相等的A,B,C三个班,小聪、小慧都选择了“数学故事”,已知小聪不在A班,求他和小慧被分到同一个班的概率.(要求列表或画树状图)

  • 20. (2022八上·江都月考) 在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(2,3),B(4,4),请在所给网格区域(含边界)上按要求画整点三角形.

    1. (1)

      在图1中画一个△PAB,使点P的横、纵坐标之和等于点A的横坐标;


    2. (2)

      在图2中画一个△PAB,使点P,B横坐标的平方和等于它们纵坐标和的4倍.


  • 21. (2017·温州)

    如图,在△ABC中,AC=BC,∠ACB=90°,⊙O(圆心O在△ABC内部)经过B、C两点,交AB于点E,过点E作⊙O的切线交AC于点F.延长CO交AB于点G,作ED∥AC交CG于点D

    1. (1) 求证:四边形CDEF是平行四边形;

    2. (2) 若BC=3,tan∠DEF=2,求BG的值.

  • 22. (2017·温州)

    如图,过抛物线y= x2﹣2x上一点A作x轴的平行线,交抛物线于另一点B,交y轴于点C,已知点A的横坐标为﹣2.


    1. (1) 求抛物线的对称轴和点B的坐标;

    2. (2) 在AB上任取一点P,连结OP,作点C关于直线OP的对称点D;

      ①连结BD,求BD的最小值;

      ②当点D落在抛物线的对称轴上,且在x轴上方时,求直线PD的函数表达式.

  • 23. (2017·温州)

    小黄准备给长8m,宽6m的长方形客厅铺设瓷砖,现将其划分成一个长方形ABCD区域Ⅰ(阴影部分)和一个环形区域Ⅱ(空白部分),其中区域Ⅰ用甲、乙、丙三种瓷砖铺设,且满足PQ∥AD,如图所示.


    1. (1) 若区域Ⅰ的三种瓷砖均价为300元/m2 , 面积为S(m2),区域Ⅱ的瓷砖均价为200元/m2 , 且两区域的瓷砖总价为不超过12000元,求S的最大值;

    2. (2) 若区域Ⅰ满足AB:BC=2:3,区域Ⅱ四周宽度相等

      ①求AB,BC的长;

      ②若甲、丙两瓷砖单价之和为300元/m2 , 乙、丙瓷砖单价之比为5:3,且区域Ⅰ的三种瓷砖总价为4800元,求丙瓷砖单价的取值范围.

  • 24. (2017·温州)

    如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD上),连结AC,DE.


    1. (1) 当∠APB=28°时,求∠B和 的度数;

    2. (2) 求证:AC=AB.

    3. (3) 在点P的运动过程中

      ①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;

      ②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.

微信扫码预览、分享更方便

试卷信息