当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

陕西省西安市雁塔区部分中学2020年数学中考模拟试卷

更新时间:2024-07-13 浏览次数:262 类型:中考模拟
一、选择题(满分30分,每小题3分)
二、填空题(满分12分,每小题3分)
三、解答题
  • 15. (2020·沈阳模拟) 先化简,再求值:(2﹣ )÷ ,其中x= ﹣3.
  • 17. (2020·雁塔模拟) 如图,已知⊙O和弦AB请你利用尺规作⊙O的内接△ABC,使AC=BC,(作出一个即可,不写作法,保留作图痕迹)

  • 18. (2021·龙岩模拟) 证明:对角线互相垂直的平行四边形是菱形.
  • 19. (2020·雁塔模拟) 某市为了解本地七年级学生寒假期间参加社会实践活动情况,随机抽查了部分七年级学生寒假参加社会实践活动的天数(“A﹣﹣﹣不超过5天”、“B﹣﹣﹣6天”、“C﹣﹣﹣7天”、“D﹣﹣﹣8天”、“E﹣﹣﹣9天及以上”),并将得到的数据绘制成如下两幅不完整的统计图.

    请根据以上的信息,回答下列问题:

    1. (1) 补全扇形统计图和条形统计图;
    2. (2) 所抽查学生参加社会实践活动天数的众数是(选填:A,B,C,D,E);
    3. (3) 若该市七年级约有2000名学生,请你估计参加社会实践“活动天数不少于7天”的学生大约有多少人?
  • 20. (2020·雁塔模拟) 如图,小明欲测量一座古塔的高度,他拿出一根竹杆竖直插在地面上,然后自己退后,使眼睛通过竹杆的顶端刚好看到塔顶,若小明眼睛离地面1.5m,竹标顶端离地面2.4m,小明到竹杆的距离DF=2m,竹杆到塔底的距离DB=32m,求这座古塔的高度.

  • 21. (2020八上·瑶海期末) 某市A,B两个蔬菜基地得知四川C,D两个灾民安置点分别急需蔬菜240t和260t的消息后,决定调运蔬菜支援灾区,已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,现将这些蔬菜全部调运C,D两个灾区安置点从A地运往C,D两处的费用分别为每吨20元和25元,从B地运往C,D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.
    1. (1) 请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值:

      C

      D

      总计/t

      A

      200

      B

      x

      300

      总计/t

      240

      260

      500

    2. (2) 设A,B两个蔬菜基地的总运费为w元,求出w与x之间的函数关系式,并求总运费最小的调运方案;
    3. (3) 经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m元(m>0),其余线路的运费不变,试讨论总运费最小的调动方案.
  • 22. (2021九上·民勤期末) 小明和小亮玩一个游戏:三张大小、质地都相同的卡片上分别标有数字2,3,4(背面完全相同),现将标有数字的一面朝下.小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和.若和为奇数,则小明胜;若和为偶数,则小亮胜.
    1. (1) 请你用画树状图或列表的方法,求出这两数和为6的概率.
    2. (2) 你认为这个游戏规则对双方公平吗?说说你的理由.
  • 23. (2021九上·鄂尔多斯期中) 如图,AB是⊙O的直径,C点在⊙O上,AD平分角∠BAC交⊙O于D,过D作直线AC的垂线,交AC的延长线于E,连接BD,CD.

    1. (1) 求证:BD=CD;
    2. (2) 求证:直线DE是⊙O的切线;
    3. (3) 若DE= ,AB=4,求AD的长.
  • 24. (2020·雁塔模拟) 在平面直角坐标系中,已知二次函数y=ax2﹣2ax﹣3a(a>0)图象与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,顶点为D.
    1. (1) 求点A,B的坐标;
    2. (2) 若M为对称轴与x轴交点,且DM=2AM,

      ①求二次函数解析式;

      ②当t﹣2≤x≤t时,二次函数有最大值5,求t值;

      ③若直线x=4与此抛物线交于点E,将抛物线在C,E之间的部分记为图象记为图象P(含C,E两点),将图象P沿直线x=4翻折,得到图象Q,又过点(10,﹣4)的直线y=kx+b与图象P,图象Q都相交,且只有两个交点,求b的取值范围.

  • 25. (2020·雁塔模拟) 如图1,在矩形纸片ABCD中,AB=12cmAD=20cm , 折叠纸片使B点落在边AD上的E处,折痕为PQ , 过点EEFABPQF , 连接BF

    1. (1) 求证:四边形BFEP为菱形;
    2. (2) 当点EAD边上移动时,折痕的端点PQ也随之移动;

      ①当点Q与点C重合时(如图2),求菱形BFEP的边长;

      ②若限定PQ分别在边BABC上移动,求出点E在边AD上移动的最大距离.

微信扫码预览、分享更方便

试卷信息