当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

重庆市巴蜀实验中学2020年数学中考一模试卷

更新时间:2020-07-19 浏览次数:308 类型:中考模拟
一、单选题
二、填空题
三、解答题
  • 19. (2020·重庆模拟) 计算:2 0200 sin 45°-(-2)1
  • 20. (2020·重庆模拟) 先化简,再选一个合适的数代入求值:
  • 21. (2021·夏津模拟) 某学校为了解全校学生对电视节目的喜爱情况(新闻、体育、动画、娱乐、戏曲),从全校学生中随机抽取部分学生进行问卷调查,并把调查结果绘制成两幅不完整的统计图.

    请根据以上信息,解答下列问题:

    1. (1) 这次被调查的学生共有多少人?
    2. (2) 请将条形统计图补充完整;
    3. (3) 若该校约有1500名学生,估计全校学生中喜欢娱乐节目的有多少人?
    4. (4) 该校广播站需要广播员,现决定从喜欢新闻节目的甲、乙、丙、丁四名同学中选取2名,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)
  • 22. (2022·仁寿模拟) 如图,正方形ABCD的对角线AC、BD相交于点O,E是OC上一点,连接EB.过点A作 ,垂足为M,AM与BD相交于点F.求证:

  • 23. (2020九上·东平期末) 某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.
    1. (1) 求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;
    2. (2) 求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?
    3. (3) 如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)
  • 24. (2020·重庆模拟) 阅读以下材料,并按要求完成相应地任务:

    莱昂哈德·欧拉(Leonhard Euler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面是欧拉发现的一个定理:在△ABC中,R和r分别为外接圆和内切圆的半径,O和I分别为其外心和内心,则 .下面是该定理的证明过程(部分):

    延长AI交⊙O于点D,过点I作⊙O的直径MN,连接DM,AN.

    ∵∠D=∠N,∴∠DMI=∠NAI(同弧所对的圆周角相等),

    ∴△MDI∽△ANI.∴ ,∴

    如图2,在图1(隐去MD,AN)的基础上作⊙O的直径DE,连接BE,BD,BI,IF

    ∵DE是⊙O的直径,∴∠DBE=90°.

    ∵⊙I与AB相切于点F,∴∠AFI=90°,

    ∴∠DBE=∠IFA.

    ∵∠BAD=∠E(同弧所对圆周角相等),

    ∴△AIF∽△EDB.

    ,∴

    任务:

    1. (1) 观察发现: (用含R,d的代数式表示);
    2. (2) 请判断BD和ID的数量关系,并说明理由.
    3. (3) 请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;
    4. (4) 应用:若△ABC的外接圆的半径为5cm,内切圆的半径为2cm,则△ABC的外心与内心之间的距离为cm.
  • 25. (2020·重庆模拟) 如图,直线 轴交于点 ,与 轴交于点 ,抛物线 经过点 .

    1. (1) 求点B的坐标和抛物线的解析式;
    2. (2) M(m,0)为x轴上一个动点,过点M垂直于x轴的直线与直线AB和抛物线分别交于点P、N,

      ①点 在线段 上运动,若以 为顶点的三角形与 相似,求点 的坐标;

      ②点 轴上自由运动,若三个点 中恰有一点是其它两点所连线段的中点(三点重合除外),则称 三点为“共谐点”.请直接写出使得 三点成为“共谐点”的 的值.

    1. (1) 方法选择:如图①,四边形ABCD是⊙O的内接四边形,连接AC,BD,AB=BC=AC.求证:BD=AD+CD.

      小颖认为可用截长法证明:在DB上截取DM=AD,连接AM…

      小军认为可用补短法证明:延长CD至点N,使得DN=AD…

      请你选择一种方法证明.

    2. (2) 类比探究:

      Ⅰ.(探究1)如图②,四边形ABCD是⊙O的内接四边形,连接AC,BD,BC是⊙O的直径,AB=AC.试用等式表示线段AD,BD,CD之间的数量关系,井证明你的结论.

      Ⅱ.(探究2)如图③,四边形ABCD是⊙O的内接四边形,连接AC,BD.若BC是⊙O的直径,∠ABC=30°,则线段AD,BD,CD之间的等量关系式是.

    3. (3) 拓展猜想:如图④,四边形ABCD是⊙O的内接四边形,连接AC,BD.若BC是⊙O的直径,BC:AC:AB=a:b:c,则线段AD,BD,CD之间的等量关系式是.

微信扫码预览、分享更方便

试卷信息