当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

江西省赣州市会昌县2019-2020学年九年级上学期数学期中...

更新时间:2020-11-17 浏览次数:272 类型:期中考试
一、单选题
二、填空题
三、解答题
  • 12. (2019九上·会昌期中) 如图,

    边长为1的正方形ABCD的对角线AC、BD相交于点O,有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G,则下列结论中正确的是

    ⑴EF= OE;⑵S四边形OEBF:S正方形ABCD=1:4;⑶BE+BF= OA;⑷在旋转过程中,当△BEF与△COF的面积之和最大时,AE=

  • 13. (2019九上·会昌期中) 解下列方程
    1. (1) x2﹣6x=0
    2. (2) 2x2﹣5x+2=0
  • 14. (2019九上·会昌期中) 在平面直角坐标系中,二次函数yax2+bx+3的图象经过点A(3,0)和点B(4,3).

    1. (1) 求二次函数的表达式;
    2. (2) 求二次函数图象的顶点坐标和对称轴.
    3. (3) 直接画出函数的图象(不列表).
  • 15. (2024八下·吉安期中) 如图,已知在△ABC中,∠A=60°,∠C=90°,将△ABC绕点B顺时针旋转150°,得到△DBE . 请仅用无刻度的直尺,按要求画图(保留画图痕迹,在图中标出字母,并在图下方表示出所画图形).

    1. (1) 在图①中,画一个等边三角形;
    2. (2) 在图②中,画一个等腰直角三角形.
  • 16. (2019九上·会昌期中) 如图1,在平行四边形ABCD中,对角线BDAB , 以BD为对称轴将△ABD翻折,点A的对应点为A′,连接AC , 得到图2.

    推理证明

    1. (1) 求证:四边形ABDC是矩形;
    2. (2) 在图1中将△ABD或△BDC进行平移、旋转或轴对称变换,重新构造一个特殊四边形.

      要求:①画出图形,标明字母;②写出构图过程及构造的特殊四边形的名称.(不要求证明)

  • 17. (2021九上·成都月考) 关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1x2
    1. (1) 求k的取值范围;
    2. (2) 若x1+x2=1﹣x1x2 , 求k的值.
  • 18. (2019九上·会昌期中) 在平面直角坐标系xOy中,△ABC的位置如图所示.

    1. (1) 分别写出△ABC各个顶点的坐标;
    2. (2) 分别写出顶点A关于x轴对称的点A′的坐标、顶点B关于y轴对称的点B′的坐标及顶点C关于原点对称的点C′的坐标;
    3. (3) 求线段BC的长.
  • 19. (2019九上·会昌期中) 二次函数yax2bxc的图象如图所示,根据图象解答下列问题:

    1. (1) 写出方程ax2bxc=0的两个根;
    2. (2) 当x为何值时,y>0?当x为何值时,y<0?
    3. (3) 写出yx的增大而减小的自变量x的取值范围.
  • 20. (2019九上·会昌期中) 如图,在△ABC中,∠B=90°,AB=6cmBC=8cm , 点PA点出发沿AB边向B以1cm/s的速度移动,点QB点出发沿BCC点以2cm/s的速度移动,当其中一个点到达终点时两个点同时停止运动,在两个点运动过程中,请回答:

    1. (1) 经过多少时间,△PBQ的面积是5cm2
    2. (2) 请你利用配方法,求出经过多少时间,四边形APQC面积最小?并求出这个最小值.
  • 21. (2020九上·蕲春期中) 如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.

    1. (1) 求证:
    2. (2) 若AB=2, ,当四边形ADFC是菱形时,求BF的长.
  • 22. (2021九上·东莞期中) 某商品的进价为每件20元,售价为每件30元,每个月可卖出180件;如果每件商品的售价每上涨1元,则每个月就会少卖出10件,但每件售价不能高于35元,设每件商品的售价上涨x元(x为整数),每个月的销售利润为y元.
    1. (1) 求y与x的函数关系式,并直接写出自变量x的取值范围;求x为何值时y的值为1920;
    2. (2) 每件商品的售价为多少元时,每个月可获得最大利润?最大利润是多少.
  • 23. (2019九上·会昌期中) 如图,抛物线经过点A(4,0)、B(﹣2,0)、C(0,﹣4)

    1. (1) 求抛物线的解析式;
    2. (2) 在抛物线AC段上是否存在点M,使△ACM的面积为3,求出在此时M的坐标,若不存在,说明理由.

微信扫码预览、分享更方便

试卷信息