当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

陕西省宝鸡市第一中学2021届九年级上学期数学第一次月考试卷

更新时间:2020-10-31 浏览次数:293 类型:月考试卷
一、选择题(共10小题,每小题3分,共30分)
二、填空题(本题共4小题,每小题3分,共12分)
三、解答题(共11小题,共78分)
  • 15. (2020九上·宝鸡月考) 解下列一元二次方程
    1. (1) x2+4x-8=0
    2. (2) (x-3)2=5(x-3)
  • 16. (2020九上·宝鸡月考) 尺规作图:如图,已知△ABC,求作菱形AEDF,使点E、D和F分别在边AB、BC、AC上,(保留作图痕迹,不写作法)

  • 17. (2020九上·宝鸡月考) 如图,正方形ABCD中,对角线BD所在的直线上有两点E、F,满足BE=DF,连接AE、AF、CE、CF,求证:△ABE≌△ADF。

  • 18. (2020九上·宝鸡月考) 阅读下面的例题,

    范例:解方程x2-|x|-2=0,

    解: (1)当x≥0时,原方程化为x2-x-2=0,解得:x1=2,x2=-1(不合题意,舍去)。

    ( 2 )当x<0时,原方程化为x2+x-2=0,解得:x1=-2,x2=1(不合题意,舍去)。

    ∴原方程的根是x1=2,x2=-2

    请参照例题解方程x2-|x-1|-1=0

  • 19. (2020九上·宝鸡月考) 设△ABC的三边长为a,b,c,其中a,b是方程x2-(c+2)x+2(c+1)=0的两个实数根。
    1. (1) 判断△ABC是否为直角三角形?是说明理由。
    2. (2) 若△ABC是等腰三角形,求a,b,c的值。
  • 20. (2023八下·祥云期末) 如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.

    1. (1) 求证:四边形BEDF是平行四边形;
    2. (2) 当四边形BEDF是菱形时,求EF的长.
  • 21. (2020九上·宝鸡月考) 箱子里有4瓶果汁,其中有一瓶是苹果汁,其余三瓶都是橙汁,它们除口味不同外,其他完全相同.现从这4瓶果汁中一次性取出2瓶。
    1. (1) 请用树状图或列表法把上述所有等可能的结果表示出来;
    2. (2) 求抽出的2瓶果汁中恰好抽到苹果汁的概率。
  • 22. (2020九上·宝鸡月考) 如图,已知一艘轮船以20海里/时的速度由西向东航行,途中接到台风警报,台风中心正以40海里/时的速度由南向北移动,距台风中心20 海里的圆形区域(包括边界)都属台风区。当轮船到A处时,测得台风中心移到位于点A正南方向B处,且AB=100

    海里,若这艘轮船自A处按原速度继续航行,在途中会不会遇到台风?若会,试求轮船最初遇到台风的时间;若不会,请说明理由。

  • 23. (2020九上·宝鸡月考) 某公司设计了一款工艺品,每件的成本是40元,为了合理定价,投放市场进行试销:据市场调查,销售单价是50元时,每天的销售量是100件,而销售单价每提高1元,每天就减少售出2件,但要求销售单价不得超过65元。
    1. (1) 若销售单价为每件60元,求每天的销售利润;
    2. (2) 要使每天销售这种工艺品盈利1350元,那么每件工艺品售价应为多少元?
  • 24. (2020九上·宝鸡月考) 已知,如图1,BD是边长为1的正方形ABCD的对角线,BE 平分∠DBC交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G。

    1. (1) 求证:△BCE≌ODCF;
    2. (2) 求CF的长;
    3. (3) 如图2,在AB上取一点H,且BH=CF,若以BC为x轴,AB为y轴建立直角坐标系,问在直线BD上是否存在点P,使得以B、H、P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的P点坐标;若不存在,说明理由。
  • 25. (2020九上·宝鸡月考) 已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边长分别交CB、DC (或它们的延长线)于点M、N,AH⊥MN于点H。

    1. (1) 如图①,当∠MAN点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:
    2. (2) 如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;
    3. (3) 如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长。

微信扫码预览、分享更方便

试卷信息