当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省台州市白云中学2021届九年级上学期数学第一次统练试卷

更新时间:2020-11-09 浏览次数:191 类型:月考试卷
一、选择题
二、填空题
三、解答题
  • 17. (2020九上·台州月考) 用适当的方法解下列方程.
    1. (1) X2-2x=0                      
    2. (2) 2x2-3x-1=0
  • 19. (2020九上·台州月考) 如图,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90,点A,C,D依次在同一直线上,且AB平行DE.

    1. (1) 求证:△ABC≌△DCE
    2. (2) 连结AE,当BC=5,AC=12时,求AE的长.
  • 20. (2020九上·台州月考) 台州市某中学对2020年4月份线上教学学生的作业情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.

    作业情况

    频数

    频率

    非常好A

     

    较好B

     

    一般C

     

     

    不好D

    40

    0.2

    请根据图表中提供的信息,解答下列问题:

    1. (1) 将统计表中所缺的数据填在表中横线上;
    2. (2) 若该中学有1800名学生,估计该校学生作业情况“非常好”和“较好”的学生一共约多少名?
    3. (3) 某学习小组4名学生的作业本中,有2本A,1本B,1本C,这些作业本封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取两本请用“列表法”或“画树状图”的方法求出两次抽到的作业本都是A的概率.
  • 21. (2020九上·台州月考) 如果关于x的一元二次方程ax2+bx+c=0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,研究发现了此类方程的一般性结论:设其中一根为t,则另一个根为2t,因此ax2+bx+c=a(x−t)(x−2t)=ax2−3atx+2t2a,可得 ; 即当 时,方程ax2+bx+c=0为倍根方程;下面我们根据此结论来解决问题:
    1. (1) 方程①x2−x−2=0;方程②x2−6x+8=0这两个方程中,是倍根方程的是(填序号即可);
    2. (2) 若(x−2)(mx+n)=0是倍根方程,求4m2+5mn+n2的值;
    3. (3) 关于x的一元二次方程 (m⩾0)是倍根方程,且点A(m,n)在一次函数y=3x−8的图象上,求此倍根方程的表达式

                                    

  • 22. (2022九下·南召开学考) 某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:

    销售单价x(元/千克)

    55

    60

    65

    70

    销售量y(千克)

    70

    60

    50

    40

    1. (1) 求y(千克)与x(元/千克)之间的函数表达式;
    2. (2) 为保证某天获得600元的销售利润,则该天的销售单价应定为多少?
    3. (3) 当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?
  • 23. (2020九上·台州月考) 在平面直角坐标系中,设二次函数 ,(a,b是实数,a不等于0).
    1. (1) 若函数y1的对称轴为直线x=3,且函数y1的图象经过点(a,b),求函数y1的表达式.
    2. (2) 若函数y1的图象经过点(r,0),其中r不等于0,求证:函数y2的图象经过点( ,0).
    3. (3) 设函数y1和函数y2的最小值分别为m和n,若m+n=0,求m,n的值.
  • 24. (2020九上·台州月考) 如图,抛物线 交x轴于A(-3,0),B(4,0)两点,与y轴交于C,连接AC、BCM为线段OB上一个动点,过点M作PM垂直x轴,交抛物线于点p,交BC于点Q.

    1. (1) 求抛物线的表达式.
    2. (2) 过点作PN垂直BC,垂足为点N. 设M点的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?
    3. (3) 试探究点在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形. 若存在,请求出此时点Q的坐标;若不存在,请说明理由.

微信扫码预览、分享更方便

试卷信息