当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

北京市门头沟区2019-2020学年九年级上学期数学期末试卷

更新时间:2024-07-13 浏览次数:54 类型:期末考试
一、单选题
二、填空题
三、解答题
  • 18. (2021九上·密云期末) 已知二次函数

    1. (1) 用配方法将其化为 的形式;
    2. (2) 在所给的平面直角坐标系xOy中,画出它的图象.
  • 19. (2020九上·门头沟期末) 如图,在平面直角坐标系xOy中,点A ,3),B ,2),C(0, ).

    ⑴以y轴为对称轴,把△ABC沿y轴翻折,画出翻折后的△

    ⑵在(1)的基础上,

    ①以点C为旋转中心,把△ 顺时针旋转90°,画出旋转后的△

    ②点 的坐标为(   ),在旋转过程中点 经过的路径 的长度为(   )(结果保留π).

  • 20. (2020九上·门头沟期末) 下面是小华同学设计的“作三角形的高线”的尺规作图的过程.

    已知:如图1,△ABC

    求作:AB边上的高线.

    作法:如图2,                                           

    ①分别以AC为圆心,大于 长               

    为半径作弧,两弧分别交于点DE;                 

    ② 作直线DE , 交AC于点F

    ③ 以点F为圆心,FA长为半径作圆,交AB的延长线于点M

    ④ 连接CM .                          

    CM 为所求AB边上的高线.                    

    根据上述作图过程,回答问题:

    1. (1) 用直尺和圆规,补全图2中的图形;
    2. (2) 完成下面的证明:

      证明:连接DADCEAEC

      ∵由作图可知DA=DC =EA=EC

      DE是线段AC的垂直平分线.

      FA=FC

      AC是⊙F的直径.

      ∴∠AMC=°()(填依据),

      CMAB

      CM就是AB边上的高线.

  • 21. (2020九上·门头沟期末) 如图,在四边形ABCD中,ADBCABBD于点B . 已知∠A = 45°,∠C= 60°, ,求AD的长.

  • 22. (2021九上·南康期末) 已知二次函数
    1. (1) 求证:无论m取任何实数时,该函数图象与x轴总有交点;
    2. (2) 如果该函数的图象与x轴交点的横坐标均为正数 , 求m的最小整数值.
  • 23. (2020九上·门头沟期末) 在平面直角坐标系 中,直线 与双曲线 交于点A(2,a).

     

    1. (1) 求a与k的值;
    2. (2) 画出双曲线 的示意图;
    3. (3) 设点 是双曲线 上一点(P与A不重合),直线 与y轴交于点 ,当 时,结合图象,直接写出b的值.
  • 24. (2020九上·门头沟期末) 如图,在RtABC中,∠C = 90°,点O是斜边AB上一定点,到点O的距离等于OB的所有点组成图形W , 图形WABBC分别交于点DE , 连接AEDE , ∠AED=∠B

    1. (1) 判断图形WAE所在直线的公共点个数,并证明.
    2. (2) 若 ,求OB
  • 25. (2020九上·门头沟期末) 如图, 是直径AB所对的半圆弧,点C 上,且∠CAB =30°,DAB边上的动点(点D与点B不重合),连接CD , 过点DDECD交直线AC于点E

    小明根据学习函数的经验,对线段AEAD长度之间的关系进行了探究.

    下面是小明的探究过程,请补充完整:

    1. (1) 对于点DAB上的不同位置,画图、测量,得到线段AEAD长度的几组值,如下表:

      位置1

      位置2

      位置3

      位置4

      位置5

      位置6

      位置7

      位置8

      位置9

      AE/cm

      0.00

      0.41

      0.77

      1.00

      1.15

      1.00

      0.00

      1.00

      4.04

      AD/cm

      0.00

      0.50

      1.00

      1.41

      2.00

      2.45

      3.00

      3.21

      3.50

      AEAD的长度这两个量中,确定的长度是自变量,的长度是这个自变量的函数;

    2. (2) 在下面的平面直角坐标系 中,画出(1)中所确定的函数的图象;

    3. (3) 结合画出的函数图象,解决问题:当AE= AD时,AD的长度约为cm(结果精确到0.1).
  • 26. (2020九上·门头沟期末) 在平面直角坐标系 中,抛物线 的顶点为P , 且与y轴交于点A , 与直线 交于点BC(点B在点C的左侧).

    1. (1) 求抛物线 的顶点P的坐标(用含a的代数式表示);
    2. (2) 横、纵坐标都是整数的点叫做整点,记抛物线与线段AC围成的封闭区域(不含边界)为“W区域”.

      ①当 时,请直接写出“W区域”内的整点个数;

      ②当“W区域”内恰有2个整点时,结合函数图象,直接写出a的取值范围.

  • 27. (2020九上·门头沟期末) 如图,∠MON=60°,OF平分∠MON , 点A在射线OM上, PQ是射线ON上的两动点,点P在点Q的左侧,且PQ=OA , 作线段OQ的垂直平分线,分别交OMOFON于点DBC , 连接ABPB

            

    1. (1) 依题意补全图形;
    2. (2) 判断线段 ABPB之间的数量关系,并证明;
    3. (3) 连接AP , 设 ,当PQ两点都在射线ON上移动时, 是否存在最小值?若存在,请直接写出 的最小值;若不存在,请说明理由.
  • 28. (2020九上·门头沟期末) 对于平面直角坐标系 中的图形MN , 给出如下定义:如果点P为图形M上任意一点,点Q为图形N上任意一点,那么称线段PQ长度的最小值为图形MN的“近距离”,记作 dMN).若图形MN的“近距离”小于或等于1,则称图形MN互为“可及图形”.

    1. (1) 当⊙O的半径为2时,如果点A(0,1),B(3,4),那么dA , ⊙O)=dB , ⊙O)=
    2. (2) 当⊙O的半径为2时,如果直线 与⊙O互为“可及图形”,求b的取值范围;
    3. (3) ⊙G的圆心G在x轴上,半径为1,直线 x轴交于点C , 与y轴交于点D , 如果⊙G和∠CDO互为“可及图形”,直接写出圆心G的横坐标m的取值范围.

微信扫码预览、分享更方便

试卷信息