当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

北京市顺义区2019-2020学年八年级上学期数学期末试卷

更新时间:2020-11-12 浏览次数:152 类型:期末考试
一、单选题
二、填空题
三、解答题
  • 17. (2020八上·顺义期末) 已知:如图,AC=BD,AC∥BD,AB和CD相交于点O.求证:

  • 21. (2020八上·顺义期末) 学习了分式运算后,老师布置了这样一道计算题: ,下面是一位同学有错的解答过程:

    1. (1) 该同学的解答过程的错误步骤是;(填序号)你认为该同学错误的原因是
    2. (2) 请写出正确解答过程.
  • 22. (2020八上·顺义期末) 下面是小明同学设计的“作一个角等于已知角”的尺规作图过程.

    已知:∠O,

    求作:一个角,使它等于∠O.

    作法:如图:

    ①在∠O的两边上分别任取一点A,B;

    ②以点A为圆心,OA为半径画弧;以点B为

    圆心,OB为半径画弧;两弧交于点C;

    ③连结AC,BC ,所以∠C即为所求作的角.

    请根据小明设计的尺规作图过程,

    1. (1) 使用直尺和圆规,补全图形;(保留作图痕迹)
    2. (2) 完成下列证明.

      证明:连结AB,

      ∵OA=AC,OB=

      )(填推理依据).

      ∴∠C=∠O.

  • 25. (2022八下·凤县期中) 如图,点D,E在△ABC的边BC上,AB=AC,AD=AE,求证:BD=CE.

  • 26. (2020八上·顺义期末) 为了解某校八年级全体女生“仰卧起坐”项目的成绩,随机抽取了部分女生进行测试,并将测试成绩分为A、B、C、D四个等级,绘制成如下不完整的统计图、表.

     

    根据以上信息解答下列问题:

    1. (1) a=,b= ,表示A等级扇形的圆心角的度数为度;
    2. (2) A等级中有八年级(5)班两名学生,如果要从A等级学生中随机选取一名介绍“仰卧起坐”锻炼经验,求抽到八年级(5)班学生的可能性大小.
  • 27. (2020八上·顺义期末) 在平面内,给定∠AOB=60°,及OB边上一点C,如图所示.到射线OA,OB距离相等的所有点组成图形G,线段OC的垂直平分线交图形G于点D,连接CD.

    1. (1) 依题意补全图形;直接写出∠DCO的度数;
    2. (2) 过点D作OD的垂线,交OA于点E,OB于点F.求证:CF=DE.
  • 28. (2020八上·顺义期末) 现代科技的发展已经进入到了5G时代,“5G”即第五代移动通信技术(英语:5th generation mobile networks或5th generation wireless systems、5th-Generation,简称5G或5G技术)是最新一代蜂窝移动通信技术,也是即4G(LTE-A、WiMax)、3G(UMTS、LTE)和2G(GSM)系统之后的延伸。中国信息通信科技集团有限公司工程师余少华院士说“同4G相比,5G的传输速率提高了10至100倍.”“从人人互联、人物互联,到物物互联,再到人网物三者的结合,5G技术最终将构建起万物互联的智能世界” 如果5G网络峰值速率是4G网络峰值速率的10倍,那么在峰值速率下传输1 000MB数据,5G网络比4G网络快90秒,求这两种网络的峰值速率(MB/秒).
  • 29. (2022·广东模拟) 如图,在Rt 中,∠C=90°,AC=BC,在线段CB延长线上取一点P,以AP为直角边,点P为直角顶点,在射线CB上方作等腰 Rt , 过点D作DE⊥CB,垂足为点E.

    1. (1) 依题意补全图形;
    2. (2) 求证: AC=PE;
    3. (3) 连接DB,并延长交AC的延长线于点F,用等式表示线段CF与AC的数量关系,并证明.
  • 30. (2020八上·顺义期末) A表示一个数,若把数A写成形如 的形式,其中 、…都为整数.则我们称把数A写成连分数形式.

    例如:把2.8写成连分数形式的过程如下:

    2.8-2=0.8,

    1.25-1=0.25,

    4-4=0.

    1. (1) 把3.245写成连分数形式不完整的过程如下:

      3.245-3=0.245,

      4.082-4=0.082,

      12.250-12=0.25,

      4-4=0.

    2. (2) 请把 写成连分数形式;
    3. (3) 有这样一个问题:如图是长为47,宽为10的长方形纸片.从中裁剪出正方形,若长方形纸片无剩余,则剪出的正方形最少是几个?

      小明认为这个问题和 “把一个数化为连分数形式” 有关联,并把 化成连分数从而解决了问题.你可以参考小明的思路解决上述问题,请直接写出“剪出的正方形最少”时,正方形的个数.

微信扫码预览、分享更方便

试卷信息