当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省绍兴市柯桥区联盟校2021届九年级上学期数学1月月考试...

更新时间:2024-07-13 浏览次数:192 类型:月考试卷
一、选择题(每小题4分,共40分)
二、填空题(每小题5分,共30分)
三、解答题(本大题共8小题,共80分)
  • 17. (2021九上·柯桥月考) 如图,一个转盘被分成3等分,每一份上各写有一个数字,随机转动转盘2次,第一次转到的数字数字为十位数字,第二次转到的数字为个位数字,2次转动后组成一个两位数(若指针停在等分线上则重新转一次)

    1. (1) 用画树状图的方法求出转动后所有可能出现的两位数的个数.
    2. (2) 甲、乙两人做游戏,约定得到的两位数是偶数时甲胜,否则乙胜,这个游戏公平吗?请说明理由.
  • 18. (2021九上·柯桥月考)

    如图,从点A看一山坡上的电线杆PQ,观测点P的仰角是45°,向前走6m到达B点,测得顶端点P和杆底端点Q的仰角分别是60°和30°,求该电线杆PQ的高度.

  • 19. (2021九上·柯桥月考) 如图,点D是半径为R的⊙O上一点.

    1. (1) 若∠A=∠C=30°,求证:直线CD与⊙O相切;
    2. (2) 已知直线CD与⊙O相切,下列条件:①ADCD;②∠A=30°;③∠ADC=120°;④DC R . 其中能得出BCR的是哪几个?并给出你认为能得出的第一个(按编号顺序)的说理过程.
  • 20. (2021九上·柯桥月考) 如图,已知点A(0,4)和点B(3,0)都在抛物线ymx2+2mx+n上.

    1. (1) 求mn
    2. (2) 向右平移上述抛物线,记平移后点A的对应点为D , 点B的对应点为C , 若四边形ABCD为菱形,求平移后抛物线的表达式;
  • 21. (2021九上·柯桥月考) 宁波地区最近雾霾天气频繁,使得空气净化器得以畅销,某商场代理销售某种空气净化器,其进价是500元/台,经过市场销售后发现,在一个月内,当售价是1000元/台时,可售出50台,且售价每降低20元,就可多售出5台.若供货商规定这种空气净化器售价不能低于600元/台,代理销售商每月要完成不低于60台的销售任务.
    1. (1) 试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量x的取值范围;
    2. (2) 当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?
  • 22. (2021九上·柯桥月考) 在平面直角坐标系中,对于任意一点Pxy),我们做以下规定:dP)=|x|+|y|,称dP)为点P的坐标距离.

    1. (1) 已知:点A(3,﹣4),求点A的坐标距离dA)的值.
    2. (2) 如图,四边形OABC为矩形,点AB在第一象限,且OCOA=1:2.

      ①求证:dA)=dC)×2

      ②若OC=2,且满足dA)+dC)=dB)+2,求点B坐标.

  • 23. (2021九上·柯桥月考) 如图1,在△APE中,∠PAE=90°,PO是△APE的角平分线,以O为圆心,OA为半径作圆交AE于点G

    1. (1) 求证:直线PE是⊙O的切线;
    2. (2) 在图2中,设PE与⊙O相切于点H , 连结AHPO于点D , 已知PA=6,tan∠EAH

      ①求⊙O的半径;

      ②求EH的长.

  • 24. (2021九上·柯桥月考) 在平面直角坐标系中,已知抛物线y=﹣x2+bx+cx轴交于AB两点(点A在点B左边),与y轴交于点C , ⊙M是△ABC的外接圆.

    如图1,若抛物线的顶点D的坐标为(1,4)

    1. (1) 求抛物线的解析式,及ABC三点的坐标;
    2. (2) 求⊙M的半径和圆心M的坐标.
    3. (3) 如图2,在x轴上有点P(7,0),试在直线BC上找点Q , 使BQP三点构成的三角形与△ABC相似.若存在,请求出Q点坐标;若不存在,请说明理由.
    4. (4) 向上平移抛物线y=﹣x2+bx+c , 在平移过程中,抛物线与x轴交于A′、B′两点,与y轴交于点C′,则△ABC′的外接圆⊙M′是否经过一个定点?若是,请求出这个点的坐标;若不是,请说明理由.

微信扫码预览、分享更方便

试卷信息