分数段 | 61—70 | 71--80 | 81--90 | 91--100 |
人数(人) | 2 | 8 | 6 | 4 |
一组 | 二组 | 三组 | 四组 | 五组 | 六组 | 七组 | 八组 | 九组 | 十组 | |
摸球的次数 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
摸到白球的次数 | 41 | 39 | 40 | 43 | 38 | 39 | 46 | 41 | 42 | 38 |
请你估计袋子中白球的个数是( )
下面有三个推断:
①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;
②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;
③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.
其中合理的是( )
每批粒数 |
50 |
100 |
300 |
400 |
600 |
1000 |
发芽的频数 |
45 |
96 |
283 |
380 |
571 |
948 |
这种油菜籽发芽的概率的估计值是.(结果精确到0.01)
①不同次数的试验,正面向上的频率可能会不相同
②当抛掷的次数 很大时,正面向上的次数一定为
③多次重复试验中,正面向上发生的频率会在某个常数附近摆动,并趋于稳定
④连续抛掷 次硬币都是正面向上,第 次抛掷出现正面向上的概率小于
摸球的次数 | 100 | 200 | 300 | 500 | 800 | 1000 | 3000 |
摸到白球的次数 | 65 | 124 | 278 | 302 | 481 | 599 | 1803 |
摸到白球的频率 | 0.65 | 0.62 | 0.593 | 0.604 | 0.601 | 0.599 | 0.601 |