当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

北京市顺义区2020-2021学年九年级上学期数学期末试卷

更新时间:2021-03-31 浏览次数:181 类型:期末考试
一、单选题
二、填空题
三、解答题
  • 19. (2020九上·顺义期末) 已知:如图,点M为锐角∠APB的边PA上一点.

    求作:∠AMD,使得点D在边PB上,且∠AMD =2∠P.

    作法:①以点M为圆心,MP长为半径画圆,交PA于另一点C,交PB 于点D点;

    ②作射线MD.

    1. (1) 使用直尺和圆规,依作法补全图形(保留作图痕迹);
    2. (2) 完成下面的证明.

      证明:∵P、C、D都在⊙M上,

       ∠P为弧CD所对的圆周角,∠CMD为弧CD所对的圆心角,

      ∴∠P= ∠CMD()(填推理依据).

      ∴∠AMD =2∠P.

  • 20. (2020九上·顺义期末) 已知:如图,△ABC∽△ACD,CD平分∠ACB,AD =2,BD =3,求AC、DC的长.

  • 21. (2020九上·顺义期末) 一艘船向正北方向航行,在A处时看到灯塔S在船的北偏东30°的方向上,继续航行12海里到达B处,看到灯塔S在船的北偏东60°的方向上.若继续沿正北方向航行,求航行过程中船距灯塔S的最近距离.(结果精确到0.1海里)(参考数据: ≈1.41, ≈1.73)

  • 22. (2020九上·顺义期末) 已知: AB为⊙O的直径,点D为弧BC的中点,过点D作⊙O的切线交AB的延长线于点E,连接CB.

    1. (1) 求证:BC∥DE;
    2. (2) 若cosE= , DE =20,求BC的长.
  • 23. (2020九上·顺义期末) 在平面直角坐标系xOy中,有抛物线 ) .
    1. (1) 求抛物线的顶点坐标(用含m的式子表示);
    2. (2) 过点A(0,1)作y轴的垂线l,点B在直线l上且横坐标是2m+1

      ①若m的值等于1,求抛物线与线段AB的交点个数;

      ②若抛物线与线段AB只有一个公共点,直接写出m的取值范围.

  • 24. (2020九上·顺义期末) 如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D为线段BC上一动点(不与点B, C重合),作射线AD、AB,将射线AD、AB分别绕点A顺时针旋转90°,得到射线 ,过点B作BC的垂线,分别交射线 于点E,F.

    1. (1) 依题意补全图形;
    2. (2) 求证:AB=AF;
    3. (3) 用等式表示线段AC,BD与BE之间的数量关系,并证明.
  • 25. (2020九上·顺义期末) 在平面直角坐标系xOy中,对于点P,若点Q满足条件:以线段PQ为对角线的正方形,边均与某条坐标轴垂直,则称点Q为点P的“正轨点”,该正方形为点P的“正轨正方形”如下图所示.

    1. (1) 已知点A的坐标是(1,3).

      ①在(-3,-1),(2,2),(3,3)中,是点A的“正轨点”的坐标是

      ②若点A的“正轨正方形”的面积是4,写出一个点A的“正轨点”的坐标:

    2. (2) 若点B(1,0)的“正轨点”在直线y=2x+2上,求点B的“正轨点”的坐标;
    3. (3) 已知点C(m,0),若直线y=2x+m上存在点C的“正轨点”,使得点C的“正轨正方形”面积小于4,直接写出m的取值范围.

微信扫码预览、分享更方便

试卷信息