如图1,是边长为a的大正方形去掉一个边长为b的小正方形形成的,设其阴影部分面积为S1 , 将图1的阴影部分沿虚线剪开拼成的长方形如图2,拼接不重叠且无缝隙,设长方形面积为S2 .
教材中,在计算如图1所示的正方形ABCD的面积时,分别从两个不同的角度进行了操作:
(i)把它看成是一个大正方形,则它的面积为(a+b)2;
(ii)把它看成是2个小长方形和2个小正方形组成的,则它的面积为a2+2ab+b2;因此,可得到等式:(a+b)2=a2+2ab+b2 .
试在图2右边空白处画出面积为2a2+3ab+b2的长方形的示意图(标注好a,b) ,由图形可知,多项式2a2+3ab+b2可分解因式为: .