当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

上海市徐汇区2021年中考数学二模试卷

更新时间:2021-05-26 浏览次数:386 类型:中考模拟
一、单选题
二、填空题
三、解答题
  • 20. (2021·徐汇模拟) 先化简再求值:( )• ,其中a=2+ b=2﹣
  • 21. (2021·徐汇模拟) 如图,在梯形ABCD中,CD ABAB=10,以AB为直径的⊙O经过点CD , 且点CD三等分弧AB

    1. (1) 求CD的长;
    2. (2) 已知点E是劣弧DC的中点,联结OE交边CD于点F , 求EF的长.
  • 22. (2021·徐汇模拟) 问题:某水果批发公司用每千克2元的价格购进1000箱橘子,每箱橘子重10千克.由于购进的橘子有损耗,所以真正可以出售的橘子不到10000千克.如果该公司希望这批橘子销售能获得5000元利润,应该把销售价格定为多少元?

    思路:为了解决这个问题,首先要估计这10000千克橘子中除去损耗后剩下多少橘子可以销售,因此需要估计损耗的橘子是多少千克.

    方案:为此,公司采用抽样调查来估计这批橘子的损耗情况.公司设计如下两种抽样方案:

    ①从仓库中最方便处打开若干箱子逐个检查;

    ②把这批橘子每箱从1~1000编号,用电脑随机选择若干号码,打开相应的箱子进行逐个检查.

    解决:

    1. (1) 公司设计的两个抽样方案,从统计意义的角度考虑,你认为哪个方案比较合适?并说明理由;
    2. (2) 该公司用合理的方式抽取了20箱橘子进行逐个检查,并在表中记录了每个被抽到的箱子里橘子的损耗情况.

      被抽到的箱子里橘子的损耗情况表:

      箱号

      每箱橘子的损耗重量(千克)

      箱号

      每箱橘子的损耗重量(千克)

      1

      0.88

      11

      0.77

      2

      0.78

      12

      0.81

      3

      1.1

      13

      0.79

      4

      0.76

      14

      0.82

      5

      0.82

      15

      0.75

      6

      0.83

      16

      0.73

      7

      0.79

      17

      1.2

      8

      1

      18

      0.72

      9

      0.85

      19

      0.77

      10

      0.76

      20

      0.79

      小计

      8.57

      小计

      8.15

      根据如表信息,请你估计这批橘子的损耗率;

    3. (3) 根据以上信息,请你帮该公司确定这批橘子的销售价格,尽可能达到该公司的盈利目标(精确到0.01元/千克).
  • 23. (2021·徐汇模拟) 如图,在△ACB中,∠ABC=90°,点D是斜边AC的中点,四边形CBDE是平行四边形.

    1. (1) 如图1,延长EDAB于点F , 求证:EF垂直平分AB
    2. (2) 如图2,联结BEAE , 如果BE平分∠ABC , 求证:AB=3BC
  • 24. (2021·徐汇模拟) 如图,已知抛物线y x2+my轴交于点C , 直线y=﹣ x+4与y轴和x轴分别交于点A和点B , 过点CCDAB , 垂足为点D , 设点Ex轴上,以CD为对角线作▱CEDF

    1. (1) 当点C在∠ABO的平分线上时,求上述抛物线的表达式;
    2. (2) 在(1)的条件下,如果▱CEDF的顶点F正好落在y轴上,求点F的坐标;
    3. (3) 如果点EBO的中点,且▱CEDF是菱形,求m的值.
  • 25. (2021·徐汇模拟) 如图,已知∠BAC , 且cos∠BACAB=10,点P是线段AB上的动点,点Q是射线AC上的动点,且AQBPx , 以线段PQ为边在AB的上方作正方形PQED , 以线段BP为边在AB上方作正三角形PBM

    1. (1) 如图2,当点E在射线AC上时,求x的值;
    2. (2) 如果⊙P经过DM两点,求正三角形PBM的边长;
    3. (3) 如果点E在∠MPB的边上,求AQ的长.

微信扫码预览、分享更方便

试卷信息