当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

内蒙古鄂尔多斯市2021年中考数学一模试卷

更新时间:2024-07-13 浏览次数:151 类型:中考模拟
一、单选题
二、填空题
三、解答题
    1. (1) 先化简,再求值: ,其
    2. (2) 解不等式组: 并把解集在数轴上表示出来.
  • 18. (2021·鄂尔多斯模拟) 随着通讯技术的迅猛发展,人与人之间的沟通方式变得更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息回答下列问题:

    1. (1) 本次调查共调查了名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为
    2. (2) 将条形统计图补充完整;
    3. (3) 该校共有1500名学生,请估计该校最喜欢用“微信”沟通的学生有多少名?
    4. (4) 某天甲、乙两名同学都想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选择同一种沟通方式的概率.
  • 19. (2021·鄂尔多斯模拟) 某挖掘机的底座高AB=0.8米,动臂BC=1.2米,CD=1.5米,BC与CD的固定夹角∠BCD=140°.初始位置如图 1,斗杆顶点D 与铲斗顶点E 所在直线DE 垂直地面AM于点E,测得∠CDE=70°(示意图 2).工作时如图 3,动臂BC 会绕点B 转动,当点 A,B,C在同一直线时,斗杆顶点D 升至最高点(示意图 4).

    1. (1) 求挖掘机在初始位置时动臂BC与AB的夹角∠ABC 的度数.
    2. (2) 问斗杆顶点D 的最高点比初始位置高了多少米(精确到 0.1米)?

      (考数据:sin50°≈0.77,cos50°≈0.64,sin70°≈0.94,cos70°≈0.34,

  • 20. (2021·鄂尔多斯模拟) 在抗击新型冠状病毒感染的肺炎疫情过程中,某医药研究所正在试研发一种抑制新型冠状病毒的药物,据临床观察:如果成人按规定的剂量注射这种药物,注射药物后每毫升血液中的含药量y(微克)与时间t(小时)之间的关系近似地满足图中折线.

    1. (1) 求注射药物后每毫升血液中含药量y与时间t之间的函数关系式,并写出自变量的取值范围;
    2. (2) 据临床观察:每毫升血液中含药量不少于4微克时,对控制病情是有效的.如果病人按规定的剂量注射该药物后,求控制病情的有效时间.
  • 21. (2020九上·泗水期末) 如图,在 中, 的平分线 于点 ,点 上,以 为直径的 经过点

    1. (1) 求证:① 的切线;

    2. (2) 若点 是劣弧 的中点,且 ,试求阴影部分的面积.
  • 22. (2021·鄂尔多斯模拟) 某校为改善办学条件,计划购进 两种规格的书架,经市场调查发现有线下和线上两种方式,具有情况如下表:

    规格

    线下

    线上

    单价(元/个)

    运费(元/个)

    单价(元/个)

    运费(元/个)

    A

    240

    0

    210

    20

    B

    300

    0

    250

    30

    1. (1) 如果在线下购买 两种书架20个,共花费5520元,求 两种书架各购买了多少个;
    2. (2) 如果在线上购买 两种书架20个,共花费 元,设其中 种书架购买 个,求W关于 的函数关系式;
    3. (3) 在(2)的条件下,若购买 种书架的数量不少于 种书架的2倍,请求出花费最少的购买方案,并计算按照该购买方案线上比线下节约多少钱.
  • 23. (2021·鄂尔多斯模拟) 如图,抛物线y=ax2+bx+3经过点A(﹣1,0),B(2,0)两点,与y轴交于点C,点D是抛物线上一个动点,设点D的横坐标为m(0<m<2).连接AC,BC,DB,DC.

    1. (1) 求抛物线的函数表达式;
    2. (2) △BCD的面积何时最大?求出此时D点的坐标和最大面积;
    3. (3) 在(2)的条件下,若点M是x轴上一动点,点N是抛物线上一动点,试判断是否存在这样的点M,使得以点B,D,M,N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.
  • 24. (2022九上·永康月考) 如图1,在Rt△ABC中,∠A=90°,AB=AC,点D,E分别在边AB,AC上,AD=AE,连接DC,点M,P,N分别为DE,DC,BC的中点.

    1. (1) 观察猜想:

      图1中,线段PM与PN的数量关系是,位置关系是

    2. (2) 探究证明:

      把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;

    3. (3) 拓展延伸:

      把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.

微信扫码预览、分享更方便

试卷信息