当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

广西北部湾经济区2021年数学中考全真模拟试卷(五)

更新时间:2021-08-02 浏览次数:146 类型:中考模拟
一、选择题(共12小题,每小题3分,共36分。在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑。)
二、填空题(本小题共6小题,每小题3分,共18分)
三、解答题(本大题共8小题,共66分。解答应写出文字说明或验算步骤)
  • 19. (2021·北部湾模拟) 计算:|1- |-( -1+(2020-π)0-2cos45°
  • 21. (2021·北部湾模拟) 如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△ABC的三个顶点A(5,2)、B(5,5)、C(1,1)均在格点上。

    (  1  )将△ABC向下平移5个单位得到△A1B1C1 , 并写出点A1的坐标;

    (  2  )画出△A1B1C1绕点C1逆时针旋转90°后得到的△A2B2C1 , 并写出点A2的坐标;.

    (  3  )在(2)的条件下,求△A1B1C1在旋转过程中扫过的面积(结果保留π)

  • 22. (2021·北部湾模拟) 电影《你好,李焕英》成为今年春节电影档的黑马,截至2021年3月17日票房已达52.78亿。为了解大家对这部电影的喜爱程度,小李3月17日在百丽宫电影院、西城天街UME电影院观看这部电影的观众中,各抽取了m名观众,统计这部分观众对电影的评价分数(满分10分,用x表示评价分数,共分为4组:A:9<x≤10;B:8<x≤9;C:7<x≤8;D:0≤x≤7),并对数据进行整理、描述和分析,下面给出了部分信息。

    其中百丽宫观众的评分位于A组有14人,评分分别为:

    10,10,9.8,9.8,9.7,9.6,9.6,9.5,9.5,9.4,9.2,9.2,9.2,9.2;

    两家电影院观众评分的平均数,中位数,众数(单位:分)如表所示:

    电影院

    百丽宫

    UME

    平均数

    9.2

    9.2

    中位数

    n

    9.5

    众数

    9.2

    9.5

    1. (1) 填空:m=,n=,并补全条形统计图;
    2. (2) 通过以上数据分析,你认为哪个电影院的观众更欢这部电影?请说明理由(一条理由即可);
    3. (3) 3月17日,百丽宫电影院、UME电影院共有1000人观看这部电影,请估计这1000人中给出这部电影评分高于9分的观众人数是多少?
  • 23. (2021·北部湾模拟) 请阅读下列材料,并完成相应的任务.

    克罗狄斯·托勒密(约90年- 168 年),古希腊天文学家、地理学家和光学家,在数学方面,他还论证了四边形的特性,即有名的托勒密定理,托勒密定理的内容如下:

    圆的内接四边形的两条对角线的乘积等于两组对边乘积的和,即:如图1,若四边形ABCD

    内接于⊙O,则有     

    任务:

    1. (1) 材料中划横线部分应填写的内容为
    2. (2) 已知,如图2,四边形ABCD内接于⊙O,BD平分∠ABC,∠COD=120%,求证:BD=AB+BC

  • 24. (2021·北部湾模拟) 某网店销售的消毒用紫外线灯很畅销,该网店店主结合店铺数据发现,日销量y(件)是售价x (元/件)的一次函数,其售价、日销售量、日销售纯利润w (元)的四组对应值如表:

    售价x (元/件)

    150

    160

    170

    180

    日销售量y (件)

    200

    180

    160

    140

    日销售纯利润w (元)

    8000

    8800

    9200

    9200

    另外,该网店每日的固定成本折算下来为2000元。

    注:日销售纯利润=日销售量×(售价-进价)-每日固定成本

    1. (1) ①求y关于x的函数解析式(不要求写出自变量的取值范围);

      ②该商品进价是元/件,当售价是元/件时,日销售纯利润最大,最大纯利润是元。

    2. (2) 每件紫外线灯的进价提高了m元(m>0),且每日固定成本增加了100元,但该店主为响应政府号召,落实用品限价规定,按售价不高于170元/件销售,若此时的日销售纯利润最高为7500元,求m的值。
  • 25. (2021·北部湾模拟) 如图,抛物线经过点A(-1,0),B(3,0),C(0,3)。过抛物线上一个动点D作x轴的平行线,交抛物线于点E,过点D、E分别作DG⊥x轴于G,EF⊥x轴于F。

    1. (1) 求抛物线的解析式。
    2. (2) 设点D的横坐标为m,四边形DEFG的周长为I,当1<m<3时,求I关于m的函数关系式,并求出当l取最大值时点D的坐标。
    3. (3) 在(2)的条件下,若点P在抛物线上,点Q在抛物线的对称轴上,是否存在以点A、D、P、Q为顶点的四边形为平行四边形?若存在,请写出相应的点P的坐标;若不存在,请说明理由。
  • 26. (2021·北部湾模拟) 在一次数学研究性学习中,小兵将两个全等的直角三角形纸片ABC和DEF拼在一起,使点A与点F重合,点C与点D重合(如图1),其中∠ACB=∠DFE=90°,BC=EF=3cm,AC=DF=4cm,并进行如下研究活动。

    活动一:将图1中的纸片DEF沿AC方向平移,连接AE,BD(如图2),当点F与点C重合时停止平移。

    [思考]图2中的四边形ABDE是平行四边形吗?请说明理由。

    [发现]当纸片DEF平移到某一位置时,小兵发现四边形ABDE为矩形(如图3)。求AF的长。

    活动二:在图3中,取AD的中点O,再将纸片DEF绕点O顺时针方向旋转a度(0≤a≤90),连接OB,OE (如图4)。

    [探究]当EF平分∠AEO时,探究OF与BD的数量关系,并说明理由。

微信扫码预览、分享更方便

试卷信息