当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

河南省驻马店市天宏大联考2021年数学中考二模试卷

更新时间:2021-09-28 浏览次数:108 类型:中考模拟
一、单选题
二、填空题
三、解答题
  • 17. (2021·驻马店模拟) 为了解某校七年级学生身高情况,随机抽取该校若干名学生测量他们的身高(单位: ),并绘制了如下两幅不完整的统计图表.

    学生身高的频数分布表

    组别

    身高(单位:

    频数

    15

    35

    15

    5

    请结合图表中提供的信息,解答下列问题:

    1. (1) 填空:样本容量为 ,样本中位数所在组别为.
    2. (2) 学生身高扇形统计图中, 组的扇形的圆心角度数为.
    3. (3) 已知该校七年级共有学生1500人,请估计身高不低于 的学生约有多少人?
  • 18. (2021·驻马店模拟) 如图,已知 的直径 ,点 上一个动点(不与点 重合),切线 的延长线于点 ,连结 .

    1. (1) 请添加一个条件使 ,并说明理由.
    2. (2) 若点 关于直线 的对称点为 .

      ①当 度时,四边形 为菱形;

      ②当 时,四边形 为正方形.

  • 19. (2023·江门模拟) 2021年元月,国家发展改革委和生态环境部颁布的《关于进一步加强塑料污染治理的意见》正式实施,各大塑料生产企业提前做好了转型升级.红星塑料有限公司经过市场研究购进一批 型可降解聚乳酸吸管和一批 型可降解纸吸管生产设备.已知购买5台 型设备和3台 型设备共需130万元,购买1台 型设备的费用恰好可购买2台 型设备.

    1. (1) 求两种设备的价格;
    2. (2) 市场开发部门经过研究,绘制出了吸管的销售收入与销售量(两种吸管总量)的关系(如 所示)以及吸管的销售成本与销售量的关系(如 所示).

      的解析式为

      的解析式为.

      ②当销售量( )满足条件时,该公司盈利(即收入大于成本).

    3. (3) 由于市场上可降解吸管需求大增,公司决定购进两种设备共10台,其中 型设备每天生产量为1.2吨, 型设备每天生产量为0.4吨,每天生产的吸管全部售出.为保证公司每天都达到盈利状态,结合市场开发部门提供的信息,求出 型设备至少需要购进多少台?
  • 20. (2021·驻马店模拟) 九年级数学“综合与实践”课的任务是测量学校旗杆的高度.小明与小东分别采用不同的方案测量,以下是他们研究报告的部分记录内容:

    课题

    测量旗杆的高度

    测量工具

    测量角度(单位:度)的仪器、测量距离(单位: )的皮尺等

    测量成员

    小明

    小东

    测量方案

    示意图

    示意图说明

    如图,旗杆的最高点 到地面的高度为 ,在测点 用仪器测得点 处的仰角分别为 ,点 均在同一竖直平面内,点 在同一条直线上.

    测量数据

    .

    .

    参考数据

    1. (1) 请选择其中一个方案,根据其数据求出旗杆的高度(精确到 ).
    2. (2) 在制定方案时,小芳同学曾提出方案“利用物体在阳光下的影子测量旗杆的高度”,但未被采纳.你认为其原因可能是什么?(写出一条即可)
  • 21. (2021·驻马店模拟) 如图所示,抛物线 的对称轴为直线 ,抛物线与 轴交于 两点,与 轴交于点 .

    1. (1) 求抛物线的解析式;
    2. (2) 连结 ,在第一象限内的抛物线上,是否存在一点 ,使 的面积最大?最大面积是多少?
  • 22. (2021·驻马店模拟) 如图

    如图1,在矩形 中, ,圆弧 过点 延长线上的点 ,圆心 上, 上有一个动点 ,交直线 于点 .线段 的长 的长 以及 的长 之间的几组对应值如下表所示.

    0

    1

    2

    3

    4

    5

    6

    7

    8

    0

    1

    2

    2.9

    3.9

    4.7

    5.3

    5.5

    4.8

    4.3

    4.4

    4.3

    4.1

    3.5

    2.7

    1.7

    1.2

    2.6

    1. (1) 将线段 的长度 作为自变量,在平面直角坐标系 中画出了函数 的图象,如图2所示.请在同一坐标系中画出函数 的图象.
    2. (2) 结合函数图象填空:(结果精确到0.1)

      线段 的长度的最大值约为

      线段 的长度的最小值约为

      圆弧 所在圆的半径约等于

      连结 面积的最大值约为.

    3. (3) 继续在同一坐标系中画出所需的函数图象,并结合图象直接写出:当以点 为顶点构成的三角形为等腰三角形时,线段 的长度的近似值.(结果精确到0.1)
  • 23. (2021·驻马店模拟) 如图,在 中, ,把射线 绕点 旋转得到射线 ,设旋转角为 ,作点 关于直线 的对称点 ,射线 交射线 于点 ,连接 于点 .

    1. (1) 如图1,当 时, 的形状是 的值为.
    2. (2) 当 时,(1)中的两个结论是否仍然成立?如果成立,请就图2或图3的情形进行证明;如果不成立,请说明理由.

微信扫码预览、分享更方便

试卷信息