当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

吉林省四平市公主岭市2020-2021学年九年级上学期数学期...

更新时间:2021-10-12 浏览次数:116 类型:期末考试
一、单选题
二、填空题
三、解答题
  • 17. (2020九上·四平期末) 如图①,在 的网格中,每个小正方形的边长都为1,点ABCP都在格点上,按图②的程序移动点P

     

    1. (1) 请在图①中画出点P所经过的路径.
    2. (2) 点P经过的路径的总长为(结果保留 ).
  • 18. (2020九上·四平期末) 如图,⊙Ox轴于AB两点,交y轴的正半轴于点C , 点D为第一象限内⊙O上的一点,连接ADODCD , 已知∠DAB = 15°,CD=2.

    1. (1) ∠OCD =度.
    2. (2) =
  • 19. (2024九上·四平期末) 如图,利用一面墙(墙的长度为20米),用34米长的篱笆围成两个鸡场.中间用一道篱笆隔开,每个鸡场均留一道1米宽的门,若两个鸡场总面积为96平方米,求AB的长.

  • 20. (2020九上·四平期末) 某中学食堂在某天早餐提供了A(猪肉包),B(鸡蛋),C(油饼)三样食品,为了便于学生尽快就餐,师生约定:早餐每人一份,每份含有两样不同的食品各一个,食堂师傅在窗口随机发放.
    1. (1) 按约定,“小李同学在该天早餐得到两个油饼”是事件(填“可能”“必然”或“不可能”).
    2. (2) 请用列表或画树状图的方法,求出小张同学该天早餐刚好得到A(猪肉包)和C(油饼)的概率.
  • 21. (2020九上·四平期末) 如图,在△ABC中,AB=AC , 以AB为直径的⊙OBC于点D , 过点DDEAC于点E

    1. (1) 求证:DE是⊙O的切线.
    2. (2) 若∠B=30°,AB=8,求BD的长.
  • 22. (2020九上·四平期末) 如图,在矩形OABC中,OA=3,OC=2,点FAB上(点F不与点AB重合),OAOC分别在x轴,y轴上,过点F的反比例函数 k>0)的图象与BC边交于点E

    1. (1) 点E的坐标为,点F的坐标为(用含k的式子表示).
    2. (2) 求k为何值时,△EFA的面积最大,最大面积是多少?
  • 23. (2024九上·四平期末) 如图,有一座抛物线形拱桥,在正常水位时水面AB的宽为20米,如果水位上升3米,则水面CD的宽是10米.

    1. (1) 建立如图所示的直角坐标系,求此抛物线的解析式;
    2. (2) 当水位在正常水位时,有一艘宽为6米的货船经过这里,船舱上有高出水面3.6米的长方体货物(货物与货船同宽).问:此船能否顺利通过这座拱桥?
  • 24. (2020九上·四平期末) 如图①,点O为正方形ABCD的中心,分别延长OAOD到点FE , 使OF=2OAOE=2OD , 连接EF . 将△EOF绕点O逆时针旋转 得到△E1OF1(如图②),连接AE1BF1

    1. (1) 探究AE1BF1的数量关系,并给予证明.
    2. (2) 当OAAE1时, =度.
  • 25. (2020九上·四平期末) 如图,在Rt△ABC中,∠C=90°,∠A=45°,AC= .动点P从点A出发,沿AB以每秒2个单位长度的速度向终点B运动.过点PPDAC于点D(点P不与点AB重合),作∠DPQ=45°,边PQ交射线DC于点Q . 设点P的运动时间为t秒.

    1. (1) 线段DC的长为(用含t的式子表示).
    2. (2) 当点Q与点C重合时,求t的值.
    3. (3) 设△PDQ与△ABC重叠部分的面积为S , 求St之间的函数关系式.
  • 26. (2020九上·四平期末) 如图,抛物线y=ax2+bx+3(a≠0)与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C , 过点CCDx轴交抛物线于点D , 连接BCBD

    1. (1) a=b=
    2. (2) 点D的坐标为;直线BC的函数解析式为;直线BD的函数解析式为
    3. (3) 将△BOC沿x轴正方向以每秒1个单位长度的速度向右平移,当点O与点B重合时,△BOC停止运动记平移后的三角形为△B′O′C′ . 在平移过程中,△B′O′C′ 与△BCD重叠的面积记为S , 设平移的时间为t秒,试求St之间的函数关系式.

微信扫码预览、分享更方便

试卷信息