当前位置: 初中数学 /华师大版(2024) /七年级上册 /第3章 整式的加减 /本章复习与测试
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

初中数学华师大版七年级上学期第3章整式的加减单元测试

更新时间:2021-10-12 浏览次数:125 类型:单元试卷
一、单选题
二、填空题
  • 11. (2021·泰州模拟) 已知x+2y=2,则1-2x-4y的值等于.
  • 12. (2021七下·余杭期中) 对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a﹣b.例如3⊗4=2×3﹣4=2.若x⊗y=2,且y⊗x=4,则x+y的值为.
  • 13. 在平面直角坐标系中,点P(x,y)经过某种变换后得到点P'(-y+1,x+2),我们把点P'(-y+1,x+2)叫做点P(x,y)的终结点已知点P1的终结点为P2 , 点P2的终结点为P3 , 点P3的终结点为P4 , 这样依次得到P1、P2、P3、P4、……、Pn , 若点P1的坐标为(2,0) ,则点P2021的坐标为
  • 14. (2021八下·城阳期末) 如图

    (问题提出):将一个边长为 ≥2)的正方形的四条边 等分,连接各边对应的等分点,则该正方形被剖分的网格中的长方形的个数(此处长方形包括正方形)和正方形个数分别是多少?

    (问题探究):要研究上面的问题,我们不妨先从特例入手,进而找到一般规律.

    探究一:将一个边长为2的正方形的四条边分别 2 等分,连接各边对应的等分点,则该正方形被剖分的网格中的长方形的个数(此处长方形包括正方形)和正方形个数分别是多少?

    如图1,从上往下,共有2行,我们先研究长方形(此处长方形包括正方形)的个数:

    ①第一行有宽边长为1,底长为1~2的长方形,共有2+1=3个;

    ②第二行有宽边长为1,底长为1~2的长方形,共有2+1=3个;

    为了便于归纳分析,我们把长方形下面的底在第二行的所有长方形均算作第二行的长方形,以下各行类同第二行.因此底第二行还包括宽边长为2,底长为1~2 的长方形,共有2+1=3个.

    即:第二行长方形共有 2×3个.

    所以如图1,长方形共有 2×3+3=9=(2+1)2

    我们再研究正方形的个数:

    分析:边长为1的正方形共有22个,边长为2的正方形共有12个,

    所以:如图 1,正方形共有22 + 12 = 5 = ×2×3×5 个.

    探究二:将一个边长为3的正方形的四条边分别3等分,连接各边对应的等分点,则该正方形被剖分的网格中的长方(此处长方形包括正方形)的个数和正方形个数分别是多少?

    如图2,从上往下,共有3行,我们先研究长方形的个数:

    ①第一行有宽长为1底长为1~3 的长方形,共有3+2+1=6个;

    ②第二行有宽边长为1,底长为 1~3的长方形,共有3+2+1=6个;

    底在第二行还包括宽边长为2,底长为1~3 的长方形,共有3+2+1=6个.

    即:第二行长方形共有2×6个.

    ③第三行有宽边长为1,底长为1~3 的长方形,共有3+2+1=6个;

    底在第三行还包括宽边长为 2,底长为 1~3 的长方形,共有 3+2+1=6个.

    底在第三行还包括宽边长为 3,底长为 1~3 的长方形,共有 3+2+1=6个.

    即:第三行长方形共有 3×6个.

    所以如图 2,长方形共有 3×6+2×6+6=(3+2+1)×6=(3+2+1)2

    我们再研究正方形的个数: 分析:边长为1的正方形共有 32个,边长为 2 的正方形共有 22个,边长为 3 的正方形共有 12个.

    所以:如图2,正方形共有 32 + 22 + 12 =14 = ×3×4×7 个.

    探究三:将一个边长为 5 的正方形的四条边分别 5 等分,连接各边对应的等分点,     则该正方形被剖分的网格中的长方形(此处长方形包括正方形)的个数和正方形个数分别是多少?

    1. (1) 如图 3,从上往下,共有 5 行,我们先研究长方形的个数:

      ①第一行有宽边长为 1,底长为 1~5 的长方形,共有 5+4+3+2+1=15个;

      ②第二行有宽边长为 1,底长为 1~5 的长方形,共有 5+4+3+2+1=15个; 底在第二行还包括宽边长为 2,底长为 1~5 的长方形,共有 5+4+3+2+1=15个. 即:第二行长方形共有2×15个.

      ③模仿上面的探究,第三行长方形总共有 3×15 个.

      ④按照上边的规律,第四行长方形总共有个.

      ⑤按照上边的规律,第五行长方形总共有个.

      所以,如图 3,长方形总共有 个.

      我们再研究正方形的个数:

      分析:边长为 1 的正方形共有 52个,边长为 2 的正方形共有 42个,边长为 3 的正方形共有 32个,边长 为 4 的正方形共有 22个,边长 为 5 的正方形共有12个.

      所以:如图 3,正方形共有5 2+ 42 + 32 + 22 + 12 = ×个.(仿照前面的探究,写成三个整数相乘的形式)

    2. (2) (问题解决)将一个边长为 ≥2)的正方形的四条边  等分,连接各边对应的等分点,根据上边的规律,得出该正方形被剖分的网格中的长方形(此处矩形包括正方形)的个数是和正方形个数分别是 ×.(用含 的代数式表示)

      (问题应用)将一个边长为 ≥2)的正方形的四条边 12 等分,连接各边对应的等分点,若得出该正方形被剖分的网格中的长方形的(此处长方形包括正方形)个数

       个,正方形个数是 个.

三、解答题
四、综合题
  • 17. (2021七下·苏州期末) 观察下列各式的规律:

    ;② ;③ ;…

    根据上述式子的规律,解答下列问题:

    1. (1) 第④个等式为.
    2. (2) 写出第n个等式,并验证其正确性.
  • 18. (2021七下·铜梁期末) 一个四位数,记千位上和百位上的数字之和为x,十位上和个位上的数字之和为y,如果x=y,那么称这个四位数为“和平数”.例如:1423,x=1+4,y=2+3,因为x=y,所以1423是“和平数”.
    1. (1) 请判断:2561(填“是”或“不是”)“和平数”
    2. (2) 直接写出:最小的“和平数”是,最大的“和平数”是
    3. (3) 如果一个“和平数”的个位上的数字是千位上的数字的两倍,且百位上的数字与十位上的数字之和是14的倍数,求满足条件的所有“和平数”.

微信扫码预览、分享更方便

试卷信息