当前位置: 高中数学 /高考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

云南省经开区2021届高三理数模拟试卷(一)

更新时间:2021-10-22 浏览次数:108 类型:高考模拟
一、单选题
二、填空题
三、解答题
  • 17. (2021·云南模拟) 如图1,一艺术拱门由两部分组成,下部为矩形 的长分别为 ,上部是圆心为 的劣弧

    1. (1) 求图1中拱门最高点到地面的距离;
    2. (2) 现欲以B点为支点将拱门放倒,放倒过程中矩形 所在的平面始终与地面垂直,如图2、图3、图4所示.设 与地面水平线 所成的角为 .记拱门上的点到地面的最大距离为 ,试用 的函数表示 ,并求出 的最大值.
  • 18. (2021·云南模拟) 在如图所示的多面体中,平面 平面 ,四边形 是边长为2的菱形,四边形 为直角梯形,四边形 为平行四边形,且

    1. (1) 若 分别为 的中点,求证: 平面
    2. (2) 若 与平面 所成角的正弦值 ,求二面角 的余弦值.
  • 19. (2021·云南模拟) “工资条里显红利,个税新政人民心”.随着2019年新年钟声的敲响,我国自1980年以来,力度最大的一次个人所得税(简称个税)改革迎来了全面实施的阶段.2019年1月1日实施的个税新政主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)=收入-个税起征点-专项附加扣除;(3)专项附加扣除包括住房、子女教育和赡养老人等.

    新旧个税政策下每月应纳税所得额(含税)计算方法及其对应的税率表如下:

    旧个税税率表(个税起征点3500元)

    新个税税率表(个税起征点5000元)

    缴税级数

    每月应纳税所得额(含税)=收入-个税起征点

    税率(%)

    每月应纳税所得额(含税)=收入-个税起征点-专项附加扣除

    税率(%)

    1

    不超过1500元部分

    3

    不超过3000元部分

    3

    2

    超过1500元至4500元部分

    10

    超过3000元至12000元部分

    10

    3

    超过4500元至9000元的部分

    20

    超过12000元至25000元的部分

    20

    4

    超过9000元至35000元的部分

    25

    超过25000元至35000元的部分

    25

    5

    超过35000元至55000元部分

    30

    超过35000元至55000元部分

    30

    ···

    ···

    ···

    ···

    ···

    随机抽取某市1000名同一收入层级的IT从业者的相关资料,经统计分析,预估他们2019年的人均月收入24000元.统计资料还表明,他们均符合住房专项扣除;同时,他们每人至多只有一个符合子女教育扣除的孩子,并且他们之中既不符合子女教育扣除又不符合赡养老人扣除、只符合子女教育扣除但不符合赡养老人扣除、只符合赡养老人扣除但不符合子女教育扣除、即符合子女教育扣除又符合赡养老人扣除的人数之比是2:1:1:1;此外,他们均不符合其他专项附加扣除.新个税政策下该市的专项附加扣除标准为:住房1000元/月,子女教育每孩1000元/月,赡养老人2000元/月等.

    假设该市该收入层级的IT从业者都独自享受专项附加扣除,将预估的该市该收入层级的IT从业者的人均月收入视为其个人月收入.根据样本估计总体的思想,解决如下问题:

    1. (1) 设该市该收入层级的IT从业者2019年月缴个税为X元,求X的分布列和期望;
    2. (2) 根据新旧个税方案,估计从2019年1月开始,经过多少个月,该市该收入层级的IT从业者各月少缴交的个税之和就超过2019年的月收入?
  • 20. (2021·云南模拟) 在平面直角坐标系 中,已知直线 与椭圆 交于点A,B(A在x轴上方),且 .设点A在x轴上的射影为N,三角形ABN的面积为2(如图1).

    1. (1) 求椭圆的方程;
    2. (2) 设平行于AB的直线与椭圆相交,其弦的中点为Q.

      ①求证:直线OQ的斜率为定值;

      ②设直线OQ与椭圆相交于两点C,D(D在x轴的上方),点P为椭圆上异于A,B,C,D一点,直线PA交CD于点E,PC交AB于点F,如图2,求证: 为定值.

  • 21. (2021·云南模拟) 已知函数 ,且 的最小值为
    1. (1) 求 的值;
    2. (2) 若不等式 对任意 恒成立,其中 是自然对数的底数,求 的取值范围;
    3. (3) 设曲线 与曲线 交于点 ,且两曲线在点 处的切线分别为 .试判断 轴是否能围成等腰三角形?若能,确定所围成的等腰三角形的个数;若不能,请说明理由.
  • 22. (2021·云南模拟) 已知在以 为极点, 轴的正半轴为极轴的极坐标系中,曲线 的极坐标方程为 ,在直角坐标系 中,直线 的参数方程为 为参数).
    1. (1) 设曲线 与直线 的交点为 ,求弦 的长度;
    2. (2) 若动点 在曲线 上,在(1)的条件下,试求 面积的最大值.
  • 23. (2021·云南模拟) 已知函数
    1. (1) 若不等式 的解集为 ,且 ,求实数 的取值范围;
    2. (2) 若不等式 对一切实数 恒成立,求实数 的取值范围.

微信扫码预览、分享更方便

试卷信息