当前位置: 初中数学 /浙教版(2024) /八年级下册 /第2章 一元二次方程 /2.3 一元二次方程的应用
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2022年初中数学浙教版八年级下册2.3一元二次方程的应用能...

更新时间:2022-01-19 浏览次数:147 类型:同步测试
一、单选题
  • 1. (2015九上·黄陂期中) 电脑病毒传播快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染,若每轮感染中平均一台电脑会感染x台电脑,下列方程正确的是(   )

    A . x(x+1)=81 B . 1+x+x2=81   C . 1+x+x(x+1)=81 D . 1+(x+1)2=81
  • 2. 要组织一次篮球邀请赛,参赛的每两个队之间都要比赛一场,据场地和时间等条件的限制,赛程计划安排7天,每天安排4场比赛,刚好完成所有比赛.设比赛组织者邀请x个队参赛,则根据题意所列方程正确的是(  )

    A . x(x+1)=28 B . x(x﹣1)=28 C . x(x+1)=28  D . x(x﹣1)=28
  • 3. 某商品经过两次降价,零售价降为原来的 , 已知两次降价的百分率均为x,则列出方程正确的是(  )

    A . B . C . (1+x)2=2  D . (1﹣x)2=2
  • 4. (2020九上·丰宁期末) 某口罩生产厂2020年1月份平均日产20万个,1月底因防控新冠疫情需求,工厂立即决定从2月份起扩大产能,3月份平均日产量达到45万个,则口罩日产量的月平均增长率是(   )
    A . 20% B . 30% C . 40% D . 50%
  • 5. (2019八下·温州期末) 《代数学》中记载,形如x2+10x=39的方程,求正数解的几何方法是:“如图1,先构造一个面积为x2的正方形,再以正方形的边长为一边向外构造四个面积为 x的矩形,得到大正方形的面积为39+25=64,则该方程的正数解为8-5=3”,小聪按此方法解关于x的方程x2+6x+m=0时,构造出如图2所示的图形,已知阴影部分的面积为36,则该方程的正数解为( )

     

    A . 6 B . 3 -3 C . 3 -2 D . 3    
二、填空题
三、综合题
  • 11. (2021八下·苍南期末) 用总长700cm的木板制作矩形置物架ABCD (如图),已知该置物架上面部分为正方形ABFE,下面部分是两个全等的矩形DGMN和矩形CNMH,中间部分为矩形EFHG。已知DG=60cm,设正方形的边长AB=x (cm)。

    1. (1) 当x=75时,EG的长为cm
    2. (2) 置物架ABCD的高AD的长为cm (用含x的代数式表示)
    3. (3) 为了便于置放物品,EG的高度不小于26cm,若矩形ABCD的面积为12750 (cm2),求x的值。
  • 12. (2021八下·温州期末) 为响应国家“垃圾分类"的号召,温州市开始实施《城镇垃圾分类标准》,某商场向厂家订购了A,B两款垃圾桶共100个。已知购买A款垃圾桶个数不超过30个时,每个A款垃圾桶进价为80元,若超过30个时,每增加1个垃圾桶,进价减少2元,厂家为保障盈利,每个A款垃圾桶进价不低于50元。每个B款垃圾桶的进价为40元,设所购买A款垃圾桶的个数为x个。
    1. (1) 根据信息填表:

      款式

      数量(个)

      进价(元/个)

      A

      x(不超过30个时)

      80

      x (超过30个时)

       

      B

       

      40

    2. (2) 若订购的垃圾桶的总进价为4800元,则该商场订购了多少个A款垃圾桶?
  • 13. (2021九上·于洪期中) 某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“五一”国际劳动节,商店决定采取适当的降价措施,以扩大销售量,尽快减少库存,增加利润.经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.
    1. (1) 设每件童装降价 元时,每天可销售件,每件盈利元;(用 的代数式表示)
    2. (2) 为了扩大销售量,尽快减少库存,每件童装降价多少元时,平均每天赢利1200元;
    3. (3) 平均每天赢利1300元,可能吗?请说明理由.
  • 14. (2021九上·武汉月考) 科学研究表明接种疫苗是战胜新冠病毒的最有效途径.当前居民接种疫苗迎来高峰期,导致相应医疗物资匮乏,某工厂及时补进了一条一次性注射器生产线生产一次性注射器.开工第一天生产200万个,第三天生产288万个.试回答下列问题:
    1. (1) 求前三天生产量的日平均增长率;
    2. (2) 经调查发现,1条生产线最大产能是600万个/天,若每增加 条生产线,每条生产线的最大产能将减少20万个/天.

      ①现该厂要保证每天生产一次性注射2600万个,在增加产能同时又要节省投入的条件下(生产线越多,投入越大),应该增加几条生产线?

      ②是否能增加生产线,使得每天生产一次性注射器5000万个,若能,应该增加几条生产线?若不能,请说明理由.

  • 15. (2024八下·杭州期中) 某农场要建一个饲养场(矩形ABCD),两面靠墙(AD位置的墙最大可用长度为27米,AB位置的墙最大可用长度为15米),另两边用木栏围成,中间也用木栏隔开,分成两个场地及一处通道,并在如图所示的三处各留1米宽的门(不用木栏).建成后木栏总长45米.

    1. (1) 若饲养场(矩形ABCD)的一边CD长为8米,则另一边BC=米.
    2. (2) 若饲养场(矩形ABCD)的面积为180平方米,求边CD的长.
    3. (3) 饲养场的面积能达到210平方米吗?若能达到,求出边CD的长;若不能达到,请说明理由.

微信扫码预览、分享更方便

试卷信息