教材中,在计算如图1所示的正方形ABCD的面积时,分别从两个不同的角度进行了操作:
(i)把它看成是一个大正方形,则它的面积为(a+b)2;
(ii)把它看成是2个小长方形和2个小正方形组成的,则它的面积为a2+2ab+b2;因此,可得到等式:(a+b)2=a2+2ab+b2 .
试在图2右边空白处画出面积为2a2+3ab+b2的长方形的示意图(标注好a,b) ,由图形可知,多项式2a2+3ab+b2可分解因式为: .
常用的分解因式方法有提公因式、公式法等.但有的多项式只用上述方法就无法分解,如x2-4y2+2x-4y,细心观察这个式子会发现前两项符合平方差公式,后两项可提取公因式,分解过程为:
x2-4y2+2x-4y
=(x2-4y2)+(2x-4y) ……分组
=(x-2y)(x+2y)+2(x-2y) ……组内分解因式
=(x-2y)(x+2y+2) ……整体思想提公因式
这种分解因式的方法叫分组分解法。
第二环节:利用这种方法解决下列问题。
因式分解:x2y-4y-2x2+8.
第三环节:拓展运用。
已知a,b,c为△ABC的三边,且b2+2ab=c2+2ac,试判断△ABC的形状.
拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如:
x2+2x﹣3=x2+2x+1﹣4=(x+1)2﹣22=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)
请你仿照以上方法,探索并解决下列问题: