当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省绍兴市新昌县2022年初中毕业生学业考试模拟数学试卷

更新时间:2022-05-25 浏览次数:162 类型:中考模拟
一、单选题
二、填空题
三、解答题
    1. (1) 计算:
    2. (2) 解不等式组:
  • 18. (2022七下·慈溪期末) 某校组织学生进行“青年大学习”知识竞赛活动,竞赛成绩分为ABCD四个等级,根据某班竞赛结果分别制作了条形统计图和扇形统计图,请根据相关信息,解答下列问题:

    1. (1) 求该班学生的总人数,并补全条形统计图.
    2. (2) 求出扇形统计图中C等级所对应的扇形圆心角度数.
    3. (3) 已知全校共400名学生,现选取每班知识竞赛A等级的学生参加校级竞赛,请你估算参加校级竞赛的人数.
  • 19. (2022·新昌模拟) 如图是一种单人网球训练器示意图,横杆 , 点D表示网球的位置,横杆可绕点A旋转,通过旋转横杆,调节网球的高度,从而适应不同高度的人进行训练.现旋转AB,将点B旋转至点 , 使.(

    1. (1) 求横杆端点B的运动路径长.(结果精确到0.01m)
    2. (2) 求网球上升的高度.(结果精确到0.01m)
  • 20. (2022·新昌模拟) 如图, , 点P是AD中点,.

    1. (1) 求∠CBP的度数.
    2. (2) 若点P到直线AB的距离为6,求点P到BC的距离.
  • 21. (2022·新昌模拟) 为节约用水,某市居民生活用水按级收费,水费分为三个等级(如图);

    例如:某户用水量为35吨,则水费为20×2.5+(30-20)×3.45=101.75(元).

    1. (1) 若某住户收到一张自来水总公司水费专用发票,其中上期抄表数为587吨,本期抄表数为617吨,请计算本期该用户应付的水费.
    2. (2) 若该住户的用水量为x吨 , 应付水费为y元,求出y关于x的函数表达式.
    3. (3) 小明爸爸收到水费短信通知:2022年2月本期用水量为45吨,水费为150.5元.根据此通知求出第三级收费标准a的值.
  • 22. (2022·新昌模拟) 一个球从地面竖直向上弹起时的速度为10m/s,经过t(s)时球的高度为h(m).已知物体竖直上抛运动中,表示物体运动上弹开始的速度,g表示重力系数,取).

    1. (1) 写出h(m)关于t(s)的二次函数表达式.
    2. (2) 求球从弹起到最高点需要多少时间,最高点的高度是多少?
    3. (3) 若球在下落至处时,遇一夹板(这部分运动的函数图象如图所示),球以遇到夹板时的速度再次向上竖直弹起,然后落回地面.求球从最初10m/s弹起到落回地面的时间.
  • 23. (2022·新昌模拟) 在学习三角形高线时,发现三角形三条高线交于一点,我们把这个交点叫做三角形的垂心.课后小明同学继续探究,上网搜索得到了三角形重心的一条性质,制作了如下表格进行探究.

    三角形关型

    直角三角形

    锐角三角形

    钝角三角形

    垂心的位置

    直角顶点

         ①     

    在三角形外部

    垂心的性质

    三角形任意顶点到垂心的距离等于外心到对边的距离的两倍.

    图形

    图1

    图2

     
    1. (1) 表格中①处应填:.
    2. (2) 小明先选择了直角三角形来探究重心的性质,写出了已知求证,请完成证明.

      已知:如图1,⊙O是的外接圆, , H是的垂心, , 垂足为E.

      求证:.

    3. (3) 如图2,⊙O是锐角三角形ABC的外接圆,高线AF与高线CG交于点H,于点E,为了证明.小明想把锐角三角形的问题转化为直角三角形,为此他过点B作了⊙O的直径BD,请继续小明的思路证明.
  • 24. (2023·婺城模拟) 如图1,在菱形ABCD中,于点N,点P是边AD上的一个动点,连结CP,过点P作 , 交直线AB于点Q.

    1. (1) 求CN的长.
    2. (2) 当点P在DN上运动且满足时,求DP的长.
    3. (3) 如图2,若点E为边AB的中点,将△CDP沿CP翻折得F到△CFP,连结EF,AF,DF,△AEF的面积有可能为1吗?如果可能,求出DF的长;如果不可能,请说明理由.

微信扫码预览、分享更方便

试卷信息