当前位置: 高中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

河北省张家口市2021-2022学年高二下学期数学期末考试试...

更新时间:2022-09-05 浏览次数:82 类型:期末考试
一、单选题
二、多选题
  • 9. (2022高二下·张家口期末) 下列命题中正确的是(       )
    A . , 则 B . 已知 , 若 , 则 C . 已知 , 若 , 则 D . 命题“ , 都有成立”的否定是“ , 使成立”
  • 10. (2022高二下·张家口期末) 变量的成对数据的散点图如下图所示,并由最小二乘法计算得到回归直线的方程为 , 相关系数为 , 决定系数为;经过残差分析确定第二个点为离群点(对应残差过大),把点去掉后,再用剩下的7组数据计算得到回归直线的方程为 , 相关系数为 , 决定系数为.则以下结论中正确的是(       )

    A . B . C . D .
  • 11. (2022高二下·张家口期末) 已知 , 则(       )
    A . B . C . D .
  • 12. (2022高二下·张家口期末) 一种疾病需要通过核酸检测来确定是否患病,检测结果呈阴性即没患病,呈阳性即为患病,已知7人中有1人患有这种疾病,先任取4人,将他们的核酸采样混在一起检测.若结果呈阳性,则表明患病者为这4人中的1人,然后再逐个检测,直到能确定患病者为止;若结果呈阴性,则在另外3人中逐个检测,直到能确定患病者为止.则(       )
    A . 最多需要检测4次可确定患病者 B . 第2次检测后就可确定患病者的概率为 C . 第3次检测后就可确定患病者的概率为 D . 检测次数的期望为
三、填空题
四、解答题
    1. (1) 求函数的单调区间;
    2. (2) 求函数在区间上的最大值和最小值.
  • 18. (2022高二下·张家口期末) 某班4名女生和3名男生站在一排.
    1. (1) 求4名女生相邻的站法种数;
    2. (2) 在这7人中随机抽取3人,记其中女生的人数为X,求随机变量X的分布列和期望的值.
  • 19. (2022高二下·张家口期末) 某市统计了近7年的实际利用外资金额(单位:亿元)的数据,得到下面的表格:

    年份

    2015

    2016

    2017

    2018

    2019

    2020

    2021

    年份代号

    1

    2

    3

    4

    5

    6

    7

    实际利用外资金额(单位:亿元)

    25

    41

    50

    58

    64

    78

    89

    由表中数据,求得变量的相关系数 , 可判定变量线性相关关系较强.

    附:对于一组数据 , 其回归直线的料率和截距的最小二乘估计分别为:.参考数据:.

    1. (1) 建立关于的线性回归方程;
    2. (2) 根据(1)的结果,预测该市实际利用外资金额首次超过150亿元的年份.
  • 20. (2022高二下·张家口期末) 某中医研究所研制了一种治疗A疾病的中药,为了解其对A疾病的作用,要进行双盲实验.把60名患有A疾病的志愿者随机平均分成两组,甲组正常使用这种中药,乙组用安慰剂代替中药,全部疗期后,统计甲、乙两组的康复人数分别为20和5.

    附表:

    0.100

    0.05

    0.01

    0.005

    0.001

    2.706

    3.841

    6.635

    7.879

    10828

    附: , 其中.

    注:双盲实验:是指在实验过程中,测验者与被测验者都不知道被测者所属的组别,(实验组或对照组),分析者在分析资料时,通常也不知道正在分析的资料属于哪一组.旨在消除可能出现在实验者和参与者意识当中的主观偏差和个人偏好.安慰剂:是指没有药物治疗作用,外形与真药相像的片、丸、针剂.

    1. (1) 根据所给数据,完成下面2×2列联表,并依据小概率值的独立性检验,能否认为使用这种中药与A疾病康复有关联?


      康复

      末康复

      单位:

      甲组

      乙组

      合计

    2. (2) 若将乙组末用药(用安慰剂代替中药)而康复的频率视为这种疾病的自愈概率,现从患有疾病的人群中随机抽取4人,记其中能自愈的人数为 , 求的分布列和数学期望.
  • 21. (2022高二下·张家口期末) 已知投资甲、乙两个项目的利润率分别为随机变量.经统计分析,的分布列分别为

    表1:

    0.3

    0.18

    0.1

    0.2

    0.5

    0.3

    表2:

    0.25

    0.15

    0.2

    0.8

    1. (1) 若在甲、乙两个项目上各投资100万元,分别表示投资甲、乙两项目所获得的利润,求的数学期望和方差,并由此分析投资甲、乙两项目的利弊;
    2. (2) 若在甲、乙两个项目总共投资100万元,求在甲、乙两个项目上分别投资多少万元时,可使所获利润的方差和最小?注:利润率.
    1. (1) 证明:
    2. (2) 若时,恒成立,求的取值范围.

微信扫码预览、分享更方便

试卷信息