当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省金华五中2022-2023学年九年级上学期阶段性作业检...

更新时间:2024-07-31 浏览次数:58 类型:月考试卷
一、选择题(本题有10小题,每小题3分,共30分)
二、填空题(本题有6小题,每小题4分,共24分)
三、解答题(本题有8小题,共66分,各小题都必须写出解答过程)
  • 19. (2022九上·金华月考) 如图,雨伞不论张开还是收紧,伞柄AP始终平分同一平面内两条伞骨所成的角∠BAC.当伞收紧时,点D与点M重合,且点A,E(F),D 在同一条直线上.已知伞骨的部分长度如下(单位:cm):

    伞骨

    DE

    DF

    AE

    AF

    AB

    AC

    长度

    36

    36

    36

    36

    86

    86

    1. (1) 求AM的长.
    2. (2) 当伞撑开时,量得∠BAC=110°,求AD的长(结果精确到1cm).参考数据:sin55°≈0.8192,cos55°≈0.5736,tan55°≈1.428.
  • 20. (2022九上·金华月考) 如图,在平面直角坐标系中,一次函数y=﹣x+m的图象与反比例函数y=(x>0)的图象交于A、B两点,已知A(1,2)

    1. (1) 求一次函数和反比例函数的解析式;
    2. (2) 连接AO、BO,求△AOB的面积.
  • 21. (2022九上·金华月考) 为了响应市政府号召,某校开展了“文明创建与我同行”活动周,活动周设置了“A:文明礼仪,B:生态环境,C:交通安全,D:卫生保洁”四个主题,每个学生选一个主题参与.为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如下条形统计图和扇形统计图.

    1. (1) 本次随机调查的学生人数是人;
    2. (2) 在扇形统计图中,“B”所在扇形的圆心角等于         度;请你补全条形统计图;
    3. (3) 小亮和小华各自随机参加其中的一个主题活动,请用画树状图或列表的方式求他们恰好选中同一个主题活动的概率.
  • 22. (2022九上·金华月考) 随着新冠疫情趋于严重,我市某电器商场根据民众健康需要,代理销售某种家用消毒器,其进价是200元/台,经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低1元,就可多售出5台,若供货商规定这种家用消毒器售价不低于330元/台,代理销售商每月要完成不低于450台的销售任务.
    1. (1) 若某月这种家用消毒器售价降低30元,则该月可售出多少台?
    2. (2) 试确定月销售量y(台)与售价x(元/台)之间的函数关系式,并求出售价x的范围;
    3. (3) 当售价x(元/台)定为多少时,商场每月销售这种家用消毒器所获的利润w(元)最大,最大利润是多少?
  • 23. (2022九上·金华月考) 阅读材料:一般地,对于某个函数,如果自变量x在取值范围内任取x=a与x=时,函数值相等,那么这个函数是“对称函数”.例如:y=x2 , 在实数范围内任取x=a时,y=a2;当x=时,y== a2 ,所以y=x2是“对称函数”.

    1. (1) 函数          对称函数(填“是”或“不是”).当x≥0时,的图象如图1所示,请在图1中画出x<0时,的图象.
    2. (2) 函数的图象如图2所示,当它与直线y=-x+n恰有3个交点时,求n的值.
    3. (3) 如图3,在平面直角坐标系中,矩形ABCD的顶点坐标分别是A(-3,0),B(2,0),C(2,-3),D(-3,-3),当二次函数(b>0)的图象与矩形的边恰有4个交点时,求b的取值范围.
  • 24. (2022九上·金华月考) 如图1,在Rt△OHP中,∠HPO=90°,OH=5,OP=3,点A,D在射线OP上运动(点D在点A的右侧), 以AD为一边在射线OP上方作矩形ABCD,且 AB=2,过点C作OH的垂线分别交射线OH和OP于点E,G.

    1. (1) 当点B在射线OE上时,求tan∠ECB的值
    2. (2) 如图2,当A,B,E三点共线,且△AEC是以AE为腰的等腰三角形时,求OA的长.
    3. (3) 连接AE、BE,当△ABE和△BEC相似时,求AD的长

微信扫码预览、分享更方便

试卷信息