当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙教版备考2023年中考数学一轮复习19.三元一次方程组(组...

更新时间:2022-11-26 浏览次数:148 类型:一轮复习
一、单选题(每题3分,共30分)
二、填空题(每题4分,共24分)
  • 11. (2022七下·覃塘期末) 已知 , 若用含x的代数式表示y,则结果为
  • 12. (2022七下·丹江口期中) 小华和小慧到校门外文具店买文件,小华购铅笔2支,练习本2本,圆珠笔1支,共付9元钱;小慧购同样铅笔1支,练习本4本,圆珠笔2支,共付12元钱,若小明去买与她们一样的购铅笔1支、练习本2本、圆珠笔1支,他需付元钱.
  • 13. (2023七下·海曙期中) 已知关于x, y的二元一次方程组有下列说法:①当x与y相等时,解得k=-4;②当x与y互为相反数时,解得k=3;③若4x·8y=32,则k=11;④无论k为何值,x与y的值一定满足关系式x+5y+12=0,其中正确的序号是
  • 14. (2021七上·包河期末) 有甲、乙、丙三种规格的钢条,已知甲种2根、乙种1根、丙种3根,共长23米;甲种1根、乙种4根、丙种5根,共长36米;问甲种1根、乙种2根、丙种3根,共长米.
  • 15. (2022·广西模拟) 在一个3×3的方格中填写了1到9这9个数字,使得每行、每列、每条对角线上的三个数之和相等,得到的3×3的方格称为一个三阶幻方,如图的三阶幻方填写了一些数和字母,则x=.

  • 16. (2022九下·重庆月考) 中国的元旦,据传说起于三皇五帝之一的颛顼,距今已有3000多年的历史.“元旦”一词最早出现于《晋书》.“元旦节”前夕,某超市分别以每袋30元、20元、10元的价格购进腊排骨、腊香肠、腊肉各若干,由于该食品均是真空包装,只能成袋出售,每袋的售价分别为50元、40元、20元,元旦节当天卖出三种年货若干袋,元月2日腊排骨卖出的数量是第一天腊排骨数量的3倍,腊香肠卖出的数量是第一天腊香肠数量的2倍,腊肉卖出的数量是第一天腊肉数量的4倍;元月3日卖出的腊排骨的数量是这三天卖出腊排骨的总数量的 ,卖出腊香肠的数量是前两天腊香肠数量和 , 卖出腊肉的数量是第二天腊肉数量的一半.若第三天三种年货的销售总额比第一天三种年货销售总额多1600元,这三天三种年货的销售总额为9350元,则这三天所售出的三种年货的总利润为元.
三、解答题(共8题,共66分)
  • 18. 一对夫妇现在年龄的和是其子女年龄和的6倍,这对夫妇两年前的年龄和是其子女两年前年龄和的10倍,6年后,这对夫妇的年龄和是其子女6年后年龄和的3倍,问这对夫妇共有多少个子女?
  • 19. 购买铅笔7支,作业本3本,圆珠笔1支共需6元;购买铅笔10支,作业本4本,圆珠笔1支共需8元.求购买铅笔11支,作业本5本,圆珠笔2支共需多少元.
  • 20. 已知 ,当 时, ;当 时, ;当 时, .求a,b,c的值.
  • 21. (2022八上·南宁开学考) 【阅读理解】

    在解方程组或求代数式的值时,可以用整体代入或整体求值的方法,化难为易.

    (1)解方程组

    解:(1)把②代入①得:解得:

    代入②得:

    所以方程组的解为

    (2)已知 , 求的值.

    解:(2)得:

    得;

     

    1. (1) 【类比迁移】若 , 则
    2. (2) 运用整体代入的方法解方程组
    3. (3) 【实际应用】“战疫情,我们在一起”,某公益组织计划为老年公寓捐赠一批防疫物资,已知打折前购买39瓶消毒液、12支测温枪、3套防护服共需2070元;打折后购买52瓶消毒液、16支测温枪、4套防护服共需2350元,比不打折时少花了多少钱?
  • 22. (2022七下·海曙期末) 阅读感悟:

    有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:

    已知实数x、y满足 ①, ②,求 的值.

    本题常规思路是将①②两式联立组成方程组,解得x、y的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由 可得 ,由 可得 .这样的解题思想就是通常所说的“整体思想”.

    解决问题:

    1. (1) 已知二元一次方程组 ,则
    2. (2) 某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,则购买5支铅笔、5块橡皮、5本日记本共需元.
    3. (3) 对于实数x、y,定义新运算: ,其中a、b、c是常数,等式右边是通常的加法和乘法运算,已知 ,那么 .
  • 23. (2022七下·江北开学考) 某通讯器材商场,计划从一厂家购进若干部新型手机以满足市场需求,已知该厂家生产三种不同型号的手机,出厂价分别是甲种型号手机1800元/部,乙种型号手机600元/部,丙种型号手机1200元/部.商场在经销中,甲种型号手机可赚200元/部,乙种型号手机可赚100元/部,丙种型号手机可赚120元/部.
    1. (1) 若商场用6万元同时购进两种不同型号的手机共40部,并恰好将钱用完,请你通过计算分析进货方案;


    2. (2) 在(1)的条件下,求盈利最多的进货方案;


    3. (3) 若该商场同时购进三种手机,且购进甲,丙两种手机用了3.9万元,预计可获得5000元利润,问这次经销商共有几种可能的方案?最低成本(进货额)多少元?


  • 24. (2022七下·内江期末) 一方有难八方支援,某市政府筹集了抗旱必需物资120吨打算运往灾区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)

    车型

    汽车运载量(吨/辆)

    汽车运费(元/辆)

    1. (1) 若全部物资都用甲、乙两种车型来运送,需运费 元,问分别需甲、乙两种车型各几辆?
    2. (2) 为了节约运费,该市政府可以调用甲、乙、丙三种车型参与运送,已知他们的总辆数为 辆,你能通过列方程组的方法分别求出几种车型的辆数吗?
    3. (3) 求出哪种方案的运费最省?最省是多少元?

微信扫码预览、分享更方便

试卷信息