A. B.
C. D.
【问题情境】数学活动课上,老师带领同学们开展“利用树叶的特征对树木进行分类”的实践活动,
【实践发现】同学们随机收集芒果树、荔枝树的树叶各10片,通过测量得到这些树叶的长y(单位:cm),宽x(单位:cm)的数据后,分别计算长宽比,整理数据如下:
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
|
芒果树叶的长宽比 |
3.8 |
3.7 |
3.5 |
3.4 |
3.8 |
4.0 |
3.6 |
4.0 |
3.6 |
4.0 |
荔枝树叶的长宽比 |
2.0 |
2.0 |
2.0 |
2.4 |
1.8 |
1.9 |
1.8 |
2.0 |
1.3 |
1.9 |
【实践探究】分析数据如下:
平均数 |
中位数 |
众数 |
方差 |
|
芒果树叶的长宽比 |
3.74 |
m |
4.0 |
0.0424 |
荔枝树叶的长宽比 |
1.91 |
2.0 |
n |
0.0669 |
【问题解决】
②B同学说:“从树叶的长宽比的平均数、中位数和众数来看,我发现荔枝树叶的长约为宽的两倍.”
上面两位同学的说法中,合理的是(填序号)
综合与实践课上,老师让同学们以“矩形的折叠”为主题开展数学活动.
操作一:对折矩形纸片ABCD , 使AD与BC重合,得到折痕EF , 把纸片展平;
操作二:在AD上选一点P , 沿BP折叠,使点A落在矩形内部点M处,把纸片展平,连接PM , BM .
根据以上操作,当点M在EF上时,写出图1中一个30°的角:.
小华将矩形纸片换成正方形纸片,继续探究,过程如下:
将正方形纸片ABCD按照(1)中的方式操作,并延长PM交CD于点Q , 连接BQ .
①如图2,当点M在EF上时,∠MBQ= ▲ , ∠CBQ= ▲ °;
②改变点P在AD上的位置(点P不与点A , D重合),如图3,判断∠MBQ与∠CBQ的数量关系,并说明理由.
在(2)的探究中,已知正方形纸片ABCD的边长为8cm,当FQ=1cm时,直接写出AP的长.