一、选择题(本题有10小题,第1-5小题,每小题3分,第6-10小题,每小题4分,共35分。每小题只有一个选项是正确的,不选、多选、错选,均不给分)
-
1.
如图,比数轴上点
表示的数大3的数是( )
A . -1
B . 0
C . 1
D . 2
-
2.
截面为扇环的几何体与长方体组成的摆件如图所示,它的主视图是( )
-
3.
(2024七上·伊春期中)
苏步青来自“数学家之乡”,为纪念其卓越贡献,国际上将一颗距地球约218000000公里的行星命名为“苏步青星”.数据218000000用科学记数法表示为( )
-
4.
(2023·温州)
阅读背景素材,完成下面小题.
某校计划组织研学活动,现有四个地点可供选择:南麂岛、百丈漈、楠溪江、雁荡山.
-
(1)
若从中随机选择一个地点,则选中“南麂岛”或“百丈漈”的概率为( )
-
(2)
为了解学生想法,校方进行问卷调查(每人选一个地点),并绘制成如图所示统计图.已知选择雁荡山的有270人,那么选择楠溪江的有( )
A . 90人
B . 180人
C . 270人
D . 360人
-
-
6.
(2024·从江模拟)
一瓶牛奶的营养成分中,碳水化合物含量是蛋白质的1.5倍,碳水化合物、蛋白质与脂肪的含量共30g.设蛋白质、脂肪的含量分别为
, 可列出方程为( )
-
7.
(2024·叙永模拟)
图1是第七届国际数学教育大会(ICME)的会徽,图2由其主体图案中相邻两个直角三角形组合而成.作菱形CDEF,使点D,E,F分别在边OC,OB,BC上,过点
作
于点
.当
时,EH的长为( )
-
8.
如图,四边形ABCD内接于
.若
, 则
的度数与BC的长分别为( )
-
9.
(2023·温州)
【素材1】某景区游览路线及方向如图所示,①④⑥各路段路程相等,⑤⑦⑧各路段路程相等,②③两路段路程相等.
【素材2】设游玩行走速度恒定,经过每个景点都停留20分钟.小温游路线①④⑤⑥⑦⑧用时3小时25分钟;小州游路线①②⑧,他离入口的路程与时间的关系(部分数据)如图所示,在2100米处,他到出口还要走10分钟.
【问题】路线①③⑥⑦⑧各路段路程之和为( )
A . 4200米
B . 4800米
C . 5200米
D . 5400米
二、填空题(本题有6小题,第11-15小题,每小题4分,第16小题5分,共25分)
-
-
11.
某校学生“亚运知识”竞赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩在80分及以上的学生有
人.
-
-
-
14.
(2023·温州)
在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,加压后气体对气缸壁所产生的压强
与气缸内气体的体积
成反比例,
关于
的函数图象如图所示.若压强由
加压到
, 则气体体积压缩了
.
-
15.
(2023·温州)
图1是
方格绘成的七巧板图案,每个小方格的边长为
, 现将它前拼成一个“房子”造型(如图2),过左侧的三个端点作圆,并在圆内右侧部分留出矩形CDEF作为题字区域(点A,E,D,B在圆上,点C,F在AB上),形成一幅装饰画,则圆的半径为
.若点A,N,M在同一直线上,
, 则题字区域的面积为
.
三、解答题(本题有8小题,共90分.解答需写出必要的文字说明、演算步骤或证明过程)
-
-
(1)
.
-
(2)
.
-
17.
(2023·温州)
如图,在
的方格纸ABCD中,每个小方格的边长为1.已知格点
, 请按要求画格点三角形(顶点均在格点上).
-
(1)
在图1中画一个等腰三角形PEF,使底边长为
, 点
在BC上,点
在AD上,再画出该三角形绕矩形ABCD的中心旋转
后的图形.
-
(2)
在图2中画一个Rt
, 使
, 点
在
上,点
在AD上,再画出该三角形向右平移1个単位后的图形.
-
18.
(2023·温州)
某公司有A、B、C三种型号电动汽车出租,每辆车每天费用分别为300元、380元、500元,阳阳打算从该公司租一辆汽车外出旅游一天,往返行程为210km,为了选择合适的型号通过网络调查,获得三种型号汽车充满电后的里程数据如图所示.
型号
|
平均里程(km)
|
中位数(km)
|
众数(km)
|
B
|
216
|
215
|
220
|
C
|
227.5
|
227.5
|
225
|
A,B,C三种型号电动汽车充满电后能行驶里程的统计图
-
(1)
阳阳已经对B,C型号汽车数据统计如下表,请继续求出A型号汽车的平均里程、中位数和众数.
-
(2)
为了尽可能避免行程中充电耽误时间,又能经济实惠地用车,请你从相关统计量和符合行程要求的百分比等进行分析,给出合理的用车型号建议。
-
19.
如图,在直角坐标系中,点
在直线
上,过点
的直线交
轴于点
.
-
-
(2)
若点
在线段AB上,点
在直线
上,求
的最大值.
-
20.
(2024·长沙模拟)
如图,已知矩形ABCD,点
在CB延长线上,点
在BC延长线上,过点
作
交ED的延长线于点
, 连结AF交EH于点
.
-
(1)
求证:
.
-
(2)
当
时,求EF的长.
-
21.
(2024·长沙模拟)
一次足球训练中,小明从球门正前方8m的
处射门,球射向球门的路线呈抛物线.当球飞行的水平距离为6m时,球达到最高点,此时球离地面3m.已知球门高OB为2.44m,现以
为原点建立如图所示直角坐标系.
-
(1)
求抛物线的函数表达式,并通过计算判断球能否射进球门(忽略其他因素)。
-
(2)
对本次训练进行分析,若射门路线的形状、最大高度均保持不变,则当时他应该带球向正后方移动多少米射门,才能让足球经过点
正上方2.25m处?
-
22.
(2023·温州)
根据背景素材,探索解决问题.
测算发射塔的高度
|
背
景
素
材
|
某兴趣小组在一幢楼房窗口测算远处小山坡上发射塔的高度MN(如图1).他们通过自制的测倾仪(如图2)在A,B,C三个位置观测,测倾仪上的示数如图3所示.
|
|
|
|
经讨论,只需选择其中两个合适的位置,通过测量﹑换算就能计算发射塔的高度.
|
问题解决
|
任务1
|
分析规划
|
选择两个观测位置:点 ▲ 和点 ▲ 。
|
获取数据
|
写出所选位置观测角的正切值,并量出观测点之间的图上距离.
|
任务2
|
推理计算
|
计算发射塔的图上高度MN.
|
任务3
|
换算高度
|
楼房实际宽度DE为12米,请通过测量换算发射塔的实际高度.
|
注:测量时,以答题纸上的图上距离为准,并精确到1mm.
-
23.
(2024九下·郁南模拟)
如图1,AB为半圆
的直径,
为BA延长线上一点,CD切半圆于点
, 交CD延长线于点
, 交半圆于点
, 已知
.如图2,连结AF,P为线段AF上一点,过点
作BC的平行线分别交CE,BE于点M,N,过点
作
于点
.设
.
-
(1)
求CE的长和
关于
的函数表达式.
-
(2)
当
, 且长度分别等于
,
的三条线段组成的三角形与
相似时,求
的值.
-