当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

山东省烟台市2023年中考数学试卷

更新时间:2023-07-10 浏览次数:164 类型:中考真卷
一、单选题
二、填空题
三、解答题
  • 17. (2023·烟台) 先化简,再求值: , 其中是使不等式成立的正整数.
  • 18. (2023·烟台) “基础学科拔尖学生培养试验计划”简称“珠峰计划”,是国家为回应“钱学森之间”而推出的一项人才培养计划,旨在培养中国自己的杰出人才.已知五所大学设有数学学科拔尖学生培养基地,并开设了暑期夏令营活动,参加活动的每名中学生只能选择其中一所大学.某市为了解中学生的参与情况,随机抽取部分学生进行调查,并将统计数据整理后,绘制了如下不完整的条形统计图和扇形统计图.

      

    1. (1) 请将条形统计图补充完整;
    2. (2) 在扇形统计图中,所在的扇形的圆心角的度数为;若该市有中学生参加本次活动,则选择大学的大约有人;
    3. (3) 甲、乙两位同学计划从三所大学中任选一所学校参加夏令营活动,请利用树状图或表格求两人恰好选取同一所大学的概率.
  • 19. (2023·烟台) 风电项目对于调整能源结构和转变经济发展方式具有重要意义.某电力部门在一处坡角为的坡地新安装了一架风力发电机,如图1.某校实践活动小组对该坡地上的这架风力发电机的塔杆高度进行了测量,图2为测量示意图.已知斜坡长16米,在地面点处测得风力发电机塔杆顶端点的仰角为 , 利用无人机在点的正上方53米的点处测得点的俯角为 , 求该风力发电机塔杆的高度.(参考数据:

      

  • 20. (2023·烟台) 【问题背景】

    如图1,数学实践课上,学习小组进行探究活动,老师要求大家对矩形进行如下操作:①分别以点为圆心,以大于的长度为半径作弧,两弧相交于点 , 作直线于点 , 连接;②将沿翻折,点的对应点落在点处,作射线于点

      

    【问题提出】

    在矩形中, , 求线段的长.

    【问题解决】

    经过小组合作、探究、展示,其中的两个方案如下:

    方案一:连接 , 如图2.经过推理、计算可求出线段的长;

    方案二:将绕点旋转处,如图3.经过推理、计算可求出线段的长.

    请你任选其中一种方案求线段的长.

  • 21. (2024八下·金沙期末) 中华优秀传统文化源远流长、是中华文明的智慧结晶.《孙子算经》、《周髀算经》是我国古代较为普及的算书、许多问题浅显有趣.某书店的《孙子算经》单价是《周髀算经》单价的 , 用600元购买《孙子算经》比购买《周髀算经》多买5本.
    1. (1) 求两种图书的单价分别为多少元?
    2. (2) 为等备“3.14数学节”活动,某校计划到该书店购买这两种图书共80本,且购买的《周髀算经》数量不少于《孙子算经》数量的一半.由于购买量大,书店打折优惠,两种图书均按八折出售.求两种图书分别购买多少本时费用最少?
  • 22. (2023·烟台) 如图,在菱形中,对角线相交于点经过两点,交对角线于点 , 连接于点 , 且

      

    1. (1) 求证:的切线;
    2. (2) 已知的半径与菱形的边长之比为 , 求的值.
  • 23. (2023·烟台) 如图,点为线段上一点,分别以为等腰三角形的底边,在的同侧作等腰和等腰 , 且 . 在线段上取一点 , 使 , 连接

      

    1. (1) 如图1,求证:
    2. (2) 如图2,若的延长线恰好经过的中点 , 求的长.
  • 24. (2023·烟台) 如图,抛物线轴交于两点,与轴交于点 . 抛物线的对称轴与经过点的直线交于点 , 与轴交于点

      

    1. (1) 求直线及抛物线的表达式;
    2. (2) 在抛物线上是否存在点 , 使得是以为直角边的直角三角形?若存在,求出所有点的坐标;若不存在,请说明理由;
    3. (3) 以点为圆心,画半径为2的圆,点上一个动点,请求出的最小值.

微信扫码预览、分享更方便

试卷信息