在四边形 中, , , , 、 分别是 、 上的点,且 ,试探究图1中线段 、 、 之间的数量关系.
(初步探索)
小晨同学认为:延长 到点 ,使 ,连接 ,先证明 ,再证明 ,则可得到 、 、 之间的数量关系是.
(探索延伸)
在四边形 中如图2, , , 、 分别是 、 上的点, ,上述结论是否仍然成立?说明理由.
(结论运用)
如图3,在某次南海海域军事演习中,舰艇甲在指挥中心( 处)北偏西30°的 处,舰艇乙在指挥中心南偏东70°的 处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以80海里/小时的速度前进,舰艇乙沿北偏东50°的方向以100海里/小时的速度前进1.2小时后,指挥中心观测到甲、乙两舰艇分别到达 , 处,且两舰艇之间的夹角( )为70°,试求此时两舰艇之间的距离.
如图 1,在四边形 ABCD 中,AB = AD,∠BAD= 120°,∠B =∠ADC= 90°,E,F 分别是 BC, CD 上的点,且∠EAF = 60°,探究图中线段BE,EF,FD之间的数量关系.
小明同学探究此问题的方法是延长FD到点G,使DG=BE, 连结AG,先证明Δ ΔADG,再证明Δ ΔAGF,可得出结论,他的结论应是.
如图 2,在四边形ABCD 中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,∠EAF= ∠BAD,上述结论是否依然成立?并说明理由.