当前位置: 初中数学 /人教版(2024) /八年级上册 /第十二章 全等三角形 /12.1 全等三角形
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

(人教版)2023-2024学年八年级数学上册12.1全等三...

更新时间:2023-08-02 浏览次数:86 类型:同步测试
一、解答题
  • 1. (2020八上·赣州期末) (问题背景)

    在四边形 中, 分别是 上的点,且 ,试探究图1中线段 之间的数量关系.

    (初步探索)

    小晨同学认为:延长 到点 ,使 ,连接 ,先证明 ,再证明 ,则可得到 之间的数量关系是

    (探索延伸)

    在四边形 中如图2, 分别是 上的点, ,上述结论是否仍然成立?说明理由.

    (结论运用)

    如图3,在某次南海海域军事演习中,舰艇甲在指挥中心( 处)北偏西30°的 处,舰艇乙在指挥中心南偏东70°的 处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以80海里/小时的速度前进,舰艇乙沿北偏东50°的方向以100海里/小时的速度前进1.2小时后,指挥中心观测到甲、乙两舰艇分别到达 处,且两舰艇之间的夹角( )为70°,试求此时两舰艇之间的距离.

  • 2. (2020八上·慈溪期中) 如图,在等腰 中,∠C=90°,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持 .连接DE、DF、EF.在此运动变化的过程中,下列结论:求证 是等腰直角三角形;

  • 4. (2019八上·海淀期中) 已知,如图:AD是△ABC的中线,AE⊥AB,AE=AB,AF⊥AC,AF=AC,连结EF.试猜想线段AD与EF的关系,并证明

二、填空题
三、选择题
四、综合题
    1. (1) 问题背景:

      如图 1,在四边形 ABCD 中,AB = AD,∠BAD= 120°,∠B =∠ADC= 90°,E,F 分别是 BC, CD 上的点,且∠EAF = 60°,探究图中线段BE,EF,FD之间的数量关系.

      小明同学探究此问题的方法是延长FD到点G,使DG=BE, 连结AG,先证明Δ ΔADG,再证明Δ ΔAGF,可得出结论,他的结论应是.

    2. (2) 探索延伸:

      如图 2,在四边形ABCD 中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,∠EAF= ∠BAD,上述结论是否依然成立?并说明理由.

  • 21. (2020八上·武汉月考) 在△ABC中,∠ABC=60°,AD,CE分别平分∠CAB,∠ACB,AD与CE交于点O

    求证:

    1. (1) ∠AOE=60°;
    2. (2) AC=AE+CD.
  • 22. (2020八上·武汉月考) 如图,已知:AB∥CD,E是BD上一点,

    1. (1) AE,CE分别是∠BAC与∠ACD的平分线,求证:AE⊥CE;
    2. (2) 若AB+CD=AC,且E是BD中点.求证:CE平分∠ACD.
    1. (1) 问题背景:如图1,在四边形 中, 绕B点旋转,它的两边分别交 于E、F.探究图中线段 之间的数量关系.小李同学探究此问题的方法是:延长 到G,使 ,连接 ,先证明 ,再证明 ,可得出结论,他的结论就是
    2. (2) 探究延伸1:如图2,在四边形 中, 绕B点旋转,它的两边分别交 于E、F.上述结论是否仍然成立?请直接写出结论(直接写出“成立”或者“不成立”),不要说明理由.
    3. (3) 探究延伸2:如图3,在四边形 中, 绕B点旋转,它的两边分别交 于E、F.上述结论是否仍然成立?并说明理由.
    4. (4) 实际应用:如图4,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西 的A处舰艇乙在指挥中心南偏东 的B处,并且两舰艇到指挥中心的距离相等接到行动指令后,舰艇甲向正东方向以75海里/小时的速度前进,同时舰艇乙沿北偏东 的方向以100海里/小时的速度前进,1.2小时后,指挥中心观测到甲、乙两舰艇分别到达E、F处,且指挥中心观测两舰艇视线之间的夹角为 ,试求此时两舰艇之间的距离.

微信扫码预览、分享更方便

试卷信息