当前位置: 初中数学 /北师大版(2024) /九年级上册 /第三章 概率的进一步认识 /2 用频率估计概率
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2023-2024学年北师大版数学九年级上册3.2用频率估计...

更新时间:2023-07-30 浏览次数:56 类型:同步测试
一、选择题
  • 1. (2023九上·西安期末) 某小组作“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的试验最有可能的是(    )

    A . 掷一个质地均匀的正六面体骰子,向上的面点数是4 B . 一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃 C . 在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀” D . 暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球
  • 2. (2022九上·成都月考) 一个袋子中装有12个球(袋中每个球除颜色外其余都相同).其活动小组想估计袋子中红球的个数,分10个组进行摸球试验,每一组做400次试验,汇总后,摸到红球的次数为3000次.请你估计袋中红球接近(    )
    A . 3 B . 4 C . 6 D . 9
  • 3. (2023九上·呈贡月考) 小明为估计一个不规则图案的面积,采取了以下办法:首先用一个面积为10cm2的长方形将不规则图案围起来(如图①);然后在一固定位置随机朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在边界线上或长方形区域外不计试验结果);最后将若干次有效试验的结果绘制成了图②所示的折线统计图.请估计不规则图案的面积大约为(    )

    A . 4cm2 B . 3.5 cm2 C . 4.5 cm2 D . 5 cm2
  • 4. (2022九上·莲都期中) 在一个不透明的口袋中,放置3个黄球,1个红球和个蓝球,这些小球除颜色外其余均相同,课外兴趣小组每次摸出一个球记录下颜色后再放回,并且统计了蓝球出现的频率(如图所示),则的值最可能是(    )

    A . 4 B . 5 C . 6 D . 7
  • 5. (2022九上·义乌期中) 如图是用计算机模拟抛掷一枚啤酒瓶盖试验的结果,下面有四个推断,其中最合理的(   )

    A . 当投掷次数是1000时,计算机记录“凸面向上”的频率是0.443,所以“凸面向上”的概率是0.443 B . 若再次用计算机模拟此实验,则当投掷次数为1000时,“凸面向上”的频率一定是0.443   C . 随着试验次数的增加,“凸面向上”的频率总在0.440附近摆动,显示出一定的稳定性,可以估计“凸面向上”的概率是0.440   D . 当投掷次数是5000次以上时,“凸面向上”的频率一定是0.40.
  • 6. (2022九上·瑞安期中) 一个袋子中装有12个球 (袋中每个球除颜色外其余都相同). 某活动小组想估计袋子中红球的个数, 分10个组进行摸球试验, 每一组做400次试验, 汇总后, 摸到红球的次数为 3000次. 请你估计袋中红球接近(  )
    A . 3 B . 4 C . 6 D . 9
  • 7. (2023九上·庐江月考) 小明在一次用频率估计概率的实验中,统计了某一结果出现的频率,并绘制了如图所示的统计图,则符合这一结果的实验可能是(    )

    A . 掷一枚质地均匀的硬币,正面朝上的概率 B . 从一副去掉大小王的扑克牌中任意抽取一张,抽到黑桃的概率 C . 从一个装有2个白球和1个红球的不透明袋子中任意摸出一球(小球除颜色外,完全相同),摸到红球的概率 D . 任意买一张电影票,座位号是2的倍数的概率
  • 8. (2021九上·平阴期末) 在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球试验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有(       )
    A . 12个 B . 14个 C . 16个 D . 18个
  • 9. (2022九上·自流井期末) 育种小组对某品种小麦发芽情况进行测试,在测试条件相同的情况下,得到如下数据:

    抽查小麦粒数

    100

    300

    800

    1000

    2000

    3000

    发芽粒数

    96

    287

    770

    958

    1923

    a

    则a的值最有可能是(     )

    A . 2700 B . 2780 C . 2880 D . 2940
  • 10. (2021九上·山阴期末) 如图,在学习完概率后,同学们要确定如图1所示的图钉顶尖触地的概率.他们采用分组的方法,在相同的情况下,抛掷图钉,根据抛掷的次数和顶尖触地的频率绘制了图2的频率统计图,根据频率统计图可知,下列说法中,正确的是(  )

    A . 由于图钉只能顶尖触地和顶尖朝上,因此抛掷一枚图钉时,顶尖朝上的概率是0.5 B . 抛掷3次,一定有1次顶尖触地 C . 抛掷一枚图钉,顶尖触地的概率是0.46 D . 抛掷100次,顶尖触地的次数一定是46次
二、填空题
  • 11. (2023九上·江北期末) 淘宝某商户为了解新商品主图是否吸引人,对该商品的点击量和展现量进行了监测,得到商品点击率如下表所示:(注:

    展现量

    50

    100

    1000

    5000

    10000

    50000

    100000

    点击量

    4

    7

    78

    385

    760

    3800

    7600

    点击率

    根据上表,估计该商品展现量为30000时,点击率约为.

  • 12. (2023九上·余姚期末) “头盔是生命之盔”,质检部门]对某工厂生产的头盔质量进行抽查,抽查结果如下表:

    抽查的头盔数n

    100

    200

    300

    500

    800

    1000

    合格的头盔数m

    95

    194

    289

    479

    769

    960

    合格头盔的频率

    0.950

    0.945

    0.962

    0.958

    0.961

    0.960

    请估计该工厂生产10000个头盔,合格的头盔数约有个.

  • 13. (2023九上·双流期末) 大数据分析技术为打赢疫情防控阻击战发挥了重要作用,如图是小乐同学的健康码(绿码)示意图,用黑白打印机打印于边长为4cm的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的总面积约为 cm2.

  • 14. (2023七下·芝罘期末) 在一个不透明的盒子里装有除颜色不同外其余均相同的黑、白两种球,其中黑球有5个.将盒子里的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,整理数据后,制作了“摸出黑球的频率”与“摸球的总次数”的关系如图所示,经分析可以推断盒子里白球有.

  • 15. (2023九下·柳州月考) 下表记录了一名球员在罚球线上投篮的结果.

    投篮次数

    50

    100

    150

    200

    300

    400

    500

    投中次数

    28

    49

    78

    102

    153

    208

    255

    投中频率

    0.56

    0.49

    0.52

    0.51

    0.51

    0.52

    0.51

    根据以上数据,估计这名球员在罚球线上投篮一次,投中的概率为

三、综合题
  • 16. (2022九上·东阳月考) 在一个不透明的口袋里装有若干个相同的红球,为了估计袋中红球的数量,九(1)班学生在数学实验室分组做摸球试验:每组先将15个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,不断重复.下表是这次活动统计汇总各小组数据后获得的全班数据统计表:

    摸球的次数s

    150

    300

    600

    900

    1200

    1500

    摸到红球的频数n

    123

    243

    487

    725

    964

    1200

    摸到红球的频率

    0.820

    0.810

    0.812

    0.806

    0.803

    a

    1. (1) a=
    2. (2) 请估计:当次数s很大时,摸到红球的频率将会接近 (精确到0.01);请推测:摸到红球的概率是 (精确到0.1).
    3. (3) 求口袋中红球的数量.
  • 17. (2022九上·青岛期中) 如图所示为某商场的一个可以自由转动的转盘,商场规定顾客购物满100元即可获得一次转动转盘的机会,当转盘停止时,指针落在哪一个区域就获得相应的奖品,如表是活动进行中的统计数据:

    转动转盘的次数

    50

    100

    200

    500

    800

    1000

    2000

    5000

    落在“纸巾”区的次数

    22

    71

    109

    312

    473

    612

    1193

    3004

    根据以上信息,解析下列问题:

    1. (1) 请估计转动该转盘一次,获得纸巾的概率是;(精确到0.1)
    2. (2) 现有若干个除颜色外都相同的白球和黑球,根据(1)的结论,在保证获得纸巾和免洗洗手液概率不变的情况下,请你设计一个可行的摸球抽奖规则,详细说明步骤;
    3. (3) 小明和小亮都购买了超过100元的商品,均获得一次转动转盘的机会,根据(2)中设计的规则,利用画树状图或列表的方法求两人都获得纸巾的概率.
  • 18. (2022九上·济南期中) 在一个不透明的袋子里装有只有颜色不同的黑、白两种颜色的球共50个,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表是活动进行中的一组统计数据:

    摸球的次数n

    100

    200

    300

    500

    800

    1000

    摸到黑球的次数m

    摸到黑球的频率

    1. (1) 填空:a= ;当n很大时,摸到黑球的频率将会趋近(精确到0.1);
    2. (2) 某小组成员从袋中拿出1个黑球,3个白球放入一个新的不透明袋子中,随机摸出两个球,请你用列表或树状图的方法求出随机摸出的两个球颜色不同的概率.
  • 19. 在一个不透明的盒子里装有颜色不同的黑、白两种球共40个,小颖做摸球试验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是“摸到白色球”的频率折线统计图.

    1. (1) 请估计:当n足够大时,摸到白球的频率将会稳定在(精确到0.01),假如你摸一次,你摸到白球的概率为
    2. (2) 试估算盒子里白、黑两种颜色的球各有多少个?
    3. (3) 在(2)条件下如果要使摸到白球的概率为 ,需要往盒子里再放入多少个白球?
  • 20. 已知,在一个盒子里有红球和白球共10个,它们除颜色外都相同,将它们充分摇匀后,从中随机抽出一个,记下颜色后放回.在摸球活动中得到如下数据:

    摸球总次数

    50

    100

    150

    200

    250

    300

    350

    400

    450

    500

    摸到红球的频数

    17

    32

    44

    64

    78

    ____

    103

    122

    136

    148

    摸到红球的频率

    0.34

    0.32

    0.293

    0.32

    0.312

    0.32

    0.294

    ____

    0.302

    ____

    1. (1) 请将表格中的数据补齐;

    2. (2) 根据上表,完成折线统计图;

    3. (3) 请你估计,当摸球次数很大时,摸到红球的频率将会接近(精确到0.1)

       

微信扫码预览、分享更方便

试卷信息