当前位置: 初中数学 /北师大版(2024) /九年级下册 /第二章 二次函数 /4 二次函数的应用
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

【提升卷】2.4二次函数的应用—2023-2024学年北师大...

更新时间:2023-09-17 浏览次数:77 类型:同步测试
一、选择题(每题2分,共20分)
  • 1. (2021九上·韶关期末) 如图,一边靠墙(墙有足够长),其它三边用12 m长的篱笆围成一个矩形(ABCD)花园,这个花园的最大面积是( )

    A . 16 m2 B . 12 m2 C . 18 m2 D . 以上都不对
  • 2. (2017·深圳模拟) 如图,在矩形ABCD中,AB=2,点E在边AD上,∠ABE=45°,BE=DE,连接BD,点P在线段DE上,过点P作PQ∥BD交BE于点Q,连接QO,设PD=x,△PQD的面积为y,则能表示y与x函数关系的图象大致是(   )

    A . B . C . D .
  • 3. 某种产品按质量分为10个档次,生产最低档次产品,每件获利润8元,每提高一个档次,每件产品利润增加2元.用同样工时,最低档次产品每天可生产60件,提高一个档次将减少3件.如果获利润最大的产品是第k档次(最低档次为第一档次,档次依次随质量增加),那么k等于(  )

    A . 5 B . 7 C . 9 D . 10
  • 4. (2022九上·中山期末) 从底面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的关系式是:h=30t-5t2 , 这个函数图象如图所示,则小球从第3s到第5s的运动路径长为( )

    A . 15m B . 20m C . 25m D . 30m
  • 5. (2021九上·中山期中) 如图,若被击打的小球飞行高度h(单位:m)与飞行时间t(单位:s)具有函数关系为 ,则小球从飞出到落地的所用时间为   

    A . B . C . D .
  • 6. (2020九上·郁南期末) 如图所示,赵州桥的桥拱用抛物线的部分表示,其函数的关系式为 ,当水面宽度 为20m时,此时水面与桥拱顶的高度 是(    )

    A . 2m B . 4m C . 10m D . 16m
  • 7. (2023·温江模拟) 某市新建一座景观桥.如图,桥的拱肋可视为抛物线的一部分,桥面可视为水平线段,桥面与拱肋用垂直于桥面的杆状景观灯连接,拱肋的跨度为40米,桥拱的最大高度为16米(不考虑灯杆和拱肋的粗细),则与的距离为5米的景观灯杆的高度为(    )

    A . 13米 B . 14米 C . 15米 D . 16米
  • 8. (2024九上·温州开学考) 某超市对进货价为10元/千克的某种苹果的销售情况进行统计,发现每天销售量y(千克)与销售价x(元/千克)存在一次函数关系,如图所示.则最大利润是(  )

    A . 180 B . 220 C . 190 D . 200
  • 9. (2021九上·长兴月考) 学校卫生间的洗手盘台面上有一瓶洗手液(如图①).小丽经过测量发现:洗手液瓶子的截面图下部分是矩形CGHD,洗手液瓶子的底面直径GH=12cm,D,H与喷嘴位置点B三点共线.当小丽按住顶部A下压至如图②位置时,洗手液从喷口B流出(此时喷嘴位置点B距台面的距离为16cm),路线近似呈抛物线状,小丽在距离台面15cm处接洗手液时,手心Q到直线DH的水平距离为4cm,若小丽不去接,则洗手液落在台面的位置距DH的水平距离是16cm.根据小丽测量所得数据,可得洗手液喷出时的抛物线函数解析式的二次项系数是(   )

    A . B . C . D .
  • 10. (2021九上·青县月考) 如图,水从山坡下的水管的小孔喷出,喷洒在山坡上,已知山坡AB:OB=1:2,若把小孔处设为原点,喷出的水柱的路线近似地用函数y=− x2+4x来刻画,下列结论错误的是( )

    A . 山坡可以用正比例函数 来刻画 B . 若水柱到水平地面的距离为1.875米,则此时距离原点水平距离为0.5米或7.5米 C . 水柱落到斜面时距O点的距离为7米 D . 水柱距O点水平距离超过4米呈下降趋势
二、填空题(每题3分,共15分)
三、解答题(共7题,共65分)
  • 16. (2023·惠东模拟) 惠东县为促进经济发展从马来西亚引进一种高档水果,某商场经销这种水果,原价每千克50元,为了减少产生水果烂损进行降价促销,连续两次降价后每千克32元,且平均每次下降的百分率相同.
    1. (1) 求平均每次下降的百分率;
    2. (2) 若每千克盈利10元,每天可售出500千克,在进货价不变的情况下,商场决定采取适当的涨价措施,经市场调查发现,若每千克每涨价1元,日销售量就减少20千克,那么每千克应涨价多少元该商场每天盈利最多?最多是多少元?
  • 17. (2021·光明模拟) 某商家经销一种绿茶,用于装修门而已投资3000元,已知绿茶每千克成本50元,在第一个月的试销时间内发现,销量w )随销售单价x(元/ )的变化而变化,满足函数关系式 ,若该绿茶的月销售利润为y(元)(销售利润=单价×销售量-成本-投资)
    1. (1) 求yx之间的函数关系式(不必写出变量x的取值范围).并求出x为何值时,y的值最大?
    2. (2) 若在第一个月里,按使y获得最大值的销售单价进行销售后,在第二个月里受物价部门干预,销售单价不得高于90元,要想在全部收回投资的基础上使第二个月的利润达到1700元,那么第二个月里应该确定销售单价为多少元?
  • 18. (2023·高明模拟) 如图,计划利用长为a米的篱笆,再借助外墙围成一个矩形栅栏,设矩形的边长为x米,面积为y平方米.

    1. (1) 若 , 墙长为50米,求出y与x之间的关系,并指出x的取值范围;
    2. (2) 在(1)的条件下,矩形的面积能达到800平方米吗?说明理由;
    3. (3) 当x与a满足什么关系时,栅栏围出的面积最大?最大值是多少?
  • 19. (2023·福田模拟) 【综合实践】

    某公园在人工湖里安装一个喷泉,在湖心处竖直安装一根水管,在水管的顶端安一个喷水头,喷出的水柱形状可以看作是抛物线的一部分.若记水柱上某一位置与水管的水平距离为米,与湖面的垂直高度为米.下面的表中记录了的五组数据:

    (米)

    0

    1

    2

    3

    4

    (米)

    0.5

    1.25

    1.5

    1.25

    0.5

    1. (1) 在下面网格(图1)中建立适当的平面直角坐标系,并根据表中所给数据画出表示函数关系的图象;

    2. (2) 若水柱最高点距离湖面的高度为米,则  ▲   , 并求函数表达式;
    3. (3) 现公园想通过喷泉设立新的游玩项目,准备通过只调节水管露出湖面的高度,使得游船能从抛物线形水柱下方通过,如图2所示,为避免游船被喷泉淋到,要求游船从抛物线形水柱下方中间通过时,顶棚上任意一点到水柱的竖直距离均不小于0.5米,已知游船顶棚宽度为3米,顶棚到湖面的高度为2米,那么公园应将水管露出湖面的高度(喷水头忽略不计)至少调节到多少米才能符合要求?请通过计算说明理由(结果保留一位小数).
  • 20. (2023·深圳模拟) 按要求解答
    1. (1) 某市计划修建一条隧道,已知隧道全长2400米,一工程队在修了1400米后,加快了工作进度,每天比原计划多修5米,结果提前10天完成,求原计划每天修多长?
    2. (2) 隧道建成后的截面图如图所示,它可以抽象成如图所示的抛物线.已知两个车道宽度米,人行道地基AC,BD宽均为2米,拱高米.建立如图所示的直角坐标系.

      ①此抛物线的函数表达式为  ▲  . (函数表达式用一般式表示)

      ②按规定,车顶部与隧道顶部在竖直方向上的高度差至少0.5米,则此隧道限高  ▲  米.

      ③已知人行道台阶高均为0.3米,按照国家标准,人行道宽度不得低于1.25米,该隧道的人行道宽度设计是否达标?说明理由.

      +

  • 21. (2023·赤峰) 乒乓球被誉为中国国球.2023年的世界乒乓球标赛中,中国队包揽了五个项目的冠军,成绩的取得与平时的刻苦训练和精准的技术分析是分不开的.如图,是乒乓球台的截面示意图,一位运动员从球台边缘正上方以击球高度的高度,将乒乓球向正前方击打到对面球台,乒乓球的运行路线近似是抛物线的一部分.

    乒乓球到球台的竖直高度记为(单位:),乒乓球运行的水平距离记为(单位:).测得如下数据:

                                                                                                                                                          

    水平距离x/

             

             

             

             

             

             

             

    竖直高度y/

             

             

             

             

             

             

             

    1. (1) 在平面直角坐标系中,描出表格中各组数值所对应的点 , 并画出表示乒乓球运行轨迹形状的大致图象;

    2. (2) ①当乒乓球到达最高点时,与球台之间的距离是           , 当乒乓球落在对面球台上时,到起始点的水平距离是           

      ②求满足条件的抛物线解析式;

    3. (3) 技术分析:如果只上下调整击球高度 , 乒乓球的运行轨迹形状不变,那么为了确保乒乓球既能过网,又能落在对面球台上,需要计算出的取值范围,以利于有针对性的训练.如图②.乒乓球台长为274 , 球网高为15.25 . 现在已经计算出乒乓球恰好过网的击球离度的值约为1.27 . 请你计算出乒乓球恰好落在对面球台边缘点B处时,击球高度的值(乒乓球大小忽略不计).
  • 22. (2016九上·路南期中) 【探究】中秋节前某商场计划购进一批进价为每盒40元的食品进行销售,根据销售经验,应季销售时,若每盒食品的售价为60元,则可售出400盒,当每盒食品的售价每提高1元,销售量就相应减少10盒.
    1. (1) 假设每盒食品的售价提高x元,那么销售每盒食品所获得的利润是元,销售量是盒.(用含x为代数式表示)
    2. (2) 设应季销售利润为y元,求y与x的函数关系式,并求出应季销售利润为8000元时每盒食品的售价.
    3. (3) 【拓展】根据销售经验,过季处理时,若每盒食品的售价定为30元亏本销售,可售出50盒,若每盒食品的售价每降低1元,销售量就相应增加5盒.当单价降低z元时,解答:

      现剩余100盒食品需要处理,经过降价处理后还是无法销售的只能积压在仓库,损失本金,若使亏损金额最小,此时每盒食品的售价应为元;

    4. (4) 若过季需要处理的食品共m盒,过季处理时亏损金额为y1元,求y1与z的函数关系式;当100≤m≤300时,求过季销售亏损金额最小时多少元?

微信扫码预览、分享更方便

试卷信息