当前位置: 高中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

广东省惠州市六校2023-2024学年高二上学期数学10月联...

更新时间:2023-11-30 浏览次数:60 类型:月考试卷
一、单选题
二、多选题
  • 9. (2023高二上·惠州月考) P表示一个点,ab表示两条不同直线,表示两个不同平面,下列说法不正确的是( )
    A . , 则 B . , 则 C . , 则 D . , 则
  • 10. (2023高二上·惠州月考) 已知平面非零向量 , 下列结论正确的是( )
    A . 是平面所有向量的一组基底,且不是基底,则实数 B . 若存在非零向量使得 , 则 C . , 则存在唯一的正实数 , 使得 D . , 且不共线,若 , 则
  • 11. (2023高二上·惠州月考) 在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生大规模群体感染的标准为“连续10天,每天新增疑似病例不超过7人”,过去10天,甲、乙、丙、丁四地新增疑似病例数据信息如下:甲地:平均数为2,众数为2;乙地:中位数为3,极差为4;丙地:平均数为2,中位数为3;丁地:平均数为2,方差为2,甲、乙、丙、丁四地中,一定没有发生大规模群体感染的是( )
    A . 甲地 B . 乙地 C . 丙地 D . 丁地
  • 12. (2023高二上·惠州月考) 已知正方体的棱长为1,点EO分别是的中点,P在正方体内部且满足 , 则下列说法正确的是( )
    A . A到直线BE的距离是 B . O到平面的距离为 C . 平面与平面间的距离为 D . P到直线AB的距离为
三、填空题
四、解答题
  • 17. (2024高二上·六盘水期中) “盲盒”是指商家将动漫、影视作品的周边或设计师单独设计出玩偶放入盒子里,当消费者购买这个盒子,因盒子上没有标注,只有打开才会知道抽到什么,不确定的刺激会加强重复决策,从而刺激消费.某商家将编号为1,2,3的三个玩偶随机放入编号为1,2,3的三个盒子里,每个盒子放一个玩偶,每个玩偶的放置是相互独立的.
    1. (1) 共有多少种不同的放法?请列举出来;
    2. (2) 求盒中放置的玩偶的编号与所在盒的编号均不相同的概率.
  • 18. (2023高二上·惠州月考) 某校对参加亚运知识竞赛的100名学生的成绩进行统计,分成五组,得到如图所示频率分布直方图.

    1. (1) 估计该校参加亚运知识竞赛的学生成绩的众数和平均数;
    2. (2) 估计该校参加亚运知识竞赛的学生成绩的80%分位数.
  • 19. (2023高二上·惠州月考) 如图所示,在四棱锥中,底面为平行四边形,O的中点,平面M的中点.

    1. (1) 证明:平面
    2. (2) 求直线与平面所成角的正切值.
  • 20. (2023高二上·惠州月考) 小王创建了一个由他和甲、乙、丙共4人组成的微信群,并向该群发红包,每次发红包的个数为1个(小王自己不抢),假设甲、乙、丙3人每次抢得红包的概率相同.
    1. (1) 若小王发2次红包,求甲恰有1次抢得红包的概率;
    2. (2) 若小王发3次红包,其中第1,2次,每次发5元的红包,第3次发10元的红包,求乙抢得所有红包的钱数之和不小于10元的概率.
  • 21. (2023高二上·惠州月考) 已知中,内角所对的边分别为 , 且.
    1. (1) 若的平分线与边交于点 , 求的值;
    2. (2) 若 , 点分别在边上,的周长为5,求的最小值.
  • 22. (2023高二上·惠州月考) 如图,四棱柱的底面ABCD为直角梯形, , 直线与直线CD所成的角取得最大值.点M的中点,且

    1. (1) 证明:平面平面
    2. (2) 若钝二面角的余弦值为 , 当时,求三棱锥的体积.

微信扫码预览、分享更方便

试卷信息