当前位置: 高中数学 /高考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

四川省宜宾市2024届高三下学期高考适应性考试(三模)理科数...

更新时间:2024-05-27 浏览次数:22 类型:高考模拟
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合要求.
二、填空题:本大题共4个小题,每小题5分,共20分.
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必做题:共60分.
  • 17. (2024高三下·宜宾模拟) 某地为调查年龄在35―50岁段人群每周的运动情况,从年龄在35―50岁段人群中随机抽取了200人的信息,将调查结果整理如下:


    女性

    男性

    每周运动超过2小时

    60

    80

    每周运动不超过2小时

    40

    20

    参考公式:

    0.10

    0.05

    0.025

    0.010

    0.001

    2.706

    3.841

    5.024

    6.635

    10.828

    1. (1) 根据以上信息,能否有99%把握认为该地年龄在35―50岁段人群每周运动超过2小时与性别有关?
    2. (2) 用样本估计总体,从该地年龄在35―50岁段人群中随机抽取3人,设抽取的3人中每周运动不超过2小时的人数为X , 求X的分布列和数学期望
  • 18. (2024高三下·宜宾模拟) 已知数列满足 , ().
    1. (1) 证明:数列是等比数列,并求出数列的通项公式;
    2. (2) 设 , 数列的前n项和为 , 若对于任意恒成立,求实数m的取值范围.
  • 19. (2024高三下·宜宾模拟) 如图,在四棱锥中,底面ABCD是正方形, , 点E为线段PC的中点,点F在线段AB上.

    1. (1) 若 , 求证:
    2. (2) 若FAB上靠近点B的三等分点,求平面DEF与平面DPA所成的锐二面角的余弦值.
  • 20. (2024高三下·宜宾模拟) 已知椭圆E的左右焦点分别为P是直线l上不同于原点O的一个动点,斜率为的直线与椭圆E交于AB两点,斜率为的直线与椭圆E交于CD两点.
    1. (1) 求的值;
    2. (2) 是否存在点P , 满足?若存在,求出点P的坐标;若不存在,说明理由.(分别为直线OAOBOCOD的斜率)
  • 21. (2024高三下·宜宾模拟) 已知函数
    1. (1) 求过原点的切线方程;
    2. (2) 求证:存在 , 使得在区间内恒成立,且内有解.
四、(二)选做题:共10分.请考生在第22、23题中选一题作答.如果多做,则按所做的第一题计分.

微信扫码预览、分享更方便

试卷信息