一、选择题(本大题共10小题,每小题3分,共30分)
-
-
-
A . 2,3,4
B . 3,4,6
C . 5,12,13
D . 4,6,7
-
-
-
-
7.
(2024八下·香洲期中)
如图,在
的正方形网格中,点
,
,
都在格点上,每个小正方形的边长均为
, 则
中
边上的高为( )
-
8.
(2024八下·松山期中)
《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈
尺),一阵风将竹子折断,其竹稍恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为
尺,则可列方程为( )
-
-
A .
B . 4
C . 5
D .
二、填空题(本大题共6小题,每小题3分,共18分)
-
-
-
-
-
-
16.
(2024八下·香洲期中)
如图,在正方形
中,
, 点
是
边上一点,点
是
延长线上一点,
,
. 连接
、
、
,
与对角线
相交于点
, 则线段
的长是
.
三、解答题(一)(本大题3小题,每小题7分,共21分)
-
-
(1)
-
(2)
-
18.
(2024八下·香洲期中)
如图,平行四边形
的对角线
、
相交于点
, 点
、
、
、
分别是
、
、
、
的中点,求证:四边形
是平行四边形.
-
19.
(2024八下·香洲期中)
如图,小明爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算这块土地的面积,
,
,
,
, 又已知
. 求这块土地的面积.
四、解答题(二)(本大题3小题,每小题9分,共27分)
-
20.
(2024八下·香洲期中)
人教版初中数学教科书八年级下册第16页阅读与思考给我们介绍了“海伦—秦九韶公式”,它是利用三角形的三条边的边长直接求三角形面积的公式:即如果一个三角形的三边长分别为
、
、
, 记
, 那么这个三角形的面积为
,如图,在
中,
,
,
.
-
(1)
求
的面积;
-
(2)
设
边上的高为
,
边上的高为
, 求
的值.
-
-
(1)
求作:以斜边
为对角线且其中一个顶点在
边上的菱形;(尺规作图,保留作图痕迹)
-
(2)
求(
)中所求作菱形的边长.
-
-
(1)
求证:四边形
为菱形;
-
五、解答题(三)(本大题2小题,每小题12分,共24分)
-
23.
(2024八下·香洲期中)
如图,在正方形
中,
,
. 动点
以每秒1个单位长度的速度从点
山发,沿线段
方向运动,动点
同时以每秒4个单位长度的速度从点
出发,沿正方形的边
运动,当点
与点
相遇时停止运动,设点
的运动时间为
秒.
-
(1)
运动时间为
秒时,点
与点
相遇;
-
(2)
求
为何值时,
是等腰三角形?
-
(3)
用含
的式子表示
的面积
, 并写出相应
的取值范围;
-
(4)
连接
, 当以点
及正方形的某两个顶点为顶点组成的三角形和
全等时,直接写出
的值(点
与点
重合时除外).
-
24.
(2024八下·香洲期中)
如图,矩形
中,对边平行且相等,四个内角均为直角.
,
, 点
E是
边上一点,连接
, 将
沿
折叠,使点
B落在点
处,连接
.
-
(1)
当
时,
的长为
.
-
-
(3)
当点
E为
的中点时,
的长为
.
-
(4)
当
落在矩形的对称轴上时,
的长为
.