当前位置: 高中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

广西五校2023-2024学年高二下学期5月联考数学试题

更新时间:2024-07-09 浏览次数:10 类型:月考试卷
一、单选题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
二、多选题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得6分,部分选对的得部分分,有选错的得0分.
三、填空题:本题共3小题,每小题5分,共15分.
四、解答题:共77分.解答应写出必要的文字说明、证明过程或演算步骤.
  • 15. (2024高二下·广西月考)  为持续深化“一盔一带”安全守护行动,有效遏制和减少因电动车闯红灯、逆行、不佩戴安全头盔等行为带来的交通安全隐患,2022年5月以来,泰安交警景区大队根据辖区实际.稳步推进“一盔一带”安全守护行动,确保辖区道路交通环境畅通、有序,该行动开展一段时间后,针对电动自行车骑乘人员是否佩戴安全头盔问题进行调查,在随机调查的1000名骑行人员中,记录其年龄和是否佩戴头盔情况,其中年龄低于40岁占60%,得到如图的等高堆积条形图.

    附: , 其中.

    0.05

    0.01

    0.005

    3.841

    6.635

    7.879

    1. (1) 据等积条所给的数据,完成下面的列联表:

      年龄

      佩戴头盔

      合计

      年龄低于40岁

      年龄不低于40岁

      合计

    2. (2) 根据(1)中的列联表,依据小概率值的独立性检验,能否认为佩戴安全头盗与年龄有关.
  • 16. (2024高二下·广西月考) 已知函数 , 且 , 求:
    1. (1) a的值;
    2. (2) 曲线在点处的切线方程;
    3. (3) 函数在区间上的最大值.
  • 17. (2024高二下·广西月考)  2024年元旦期间,辽宁省推出了将冰雪温泉、民俗文化与体育活动深度融合的冬季主题系列活动.现主委会要招募一批志愿者,应聘者需参加相关测试,测试合格者才能予以录用.测试备选题中关于冰雪温泉内容的有3道,关于民俗文化内容的有4道,关于体育活动内容的有道.已知应聘者甲随机抽出2道题都是关于冰雪温泉内容的概率为
    1. (1) 求的值;
    2. (2) 招募方案规定:每位应聘者要从备选题中随机抽出3道题进行测试,至少答对2道题者视为测试合格.已知应聘者甲能答对备选题中的6道题,应聘者乙答对每道备选题的概率都是

      (ⅰ)求应聘者甲答对题的数量的分布列和数学期望;

      (ⅱ)试估计甲、乙两名应聘者谁被录用的可能性大,并说明理由.

  • 18. (2024高二下·广西月考)  为帮助乡村脱贫,某勘探队计划了解当地矿脉某金属的分布情况,测得了平均金属含量(单位:)与样本对原点的距离(单位:)的数据,并作了初步处理,得到了下面的一些统计量的值.(表中).附:对于一组数据 , 其线性相关系数

    其回归直线的斜率和截距的最小二乘估计分别为:

    6

    97.90

    0.21

    60

    0.14

    1412

    26.13

    ﹣1.40

    1. (1) 利用样本相关系数的知识,判断哪一个更适宜作为平均金属含量关于样本对原点的距离的回归方程类型?
    2. (2) 根据(1)的结果回答下列问题:

      i)建立关于的回归方程;

      ii)样本对原点的距离时,金属含量的预报值是多少?

      iii)已知该金属在距离原点时的平均开采成本(单位:元)与关系为 , 根据(2)的结果回答,为何值时,开采成本最大?

  • 19. (2024高二下·广西月考)  已知函数 . 若函数有两个不相等的零点
    1. (1) 求a的取值范围;
    2. (2) 证明:

微信扫码预览、分享更方便

试卷信息