例:已知x可取任何实数,试求二次三项式2x2-12x+14的值的范围.
解:2x2-12x+14=2(x2-6x)+14=2(x2-6x+32-32)+14
=2[(x-3)2-9]+14=2(x-3)2-18+14=2(x-3)2-4.
∵无论x取何实数,总有(x-3)2≥0,∴2(x-3)2-4≥-4.
即无论x取何实数,2x2-12x+14的值总是不小于-4的实数.
问题:已知x可取任何实数,则二次三项式-3x2+12x+11的最值情况是( )
成绩(单位:次) | ||||||||
人数 |
(1)求证:△AOE≌△COF;
(2)求证:四边形AFCE为菱形;
(3)求菱形AFCE的周长.
(1)综合与实践数学活动课上,张老师给出了一个问题:已知二次函数 , 当时,y的取值范围为 ;
①小伟同学经过分析后,将原二次函数配方成形式,确定抛物线对称轴为直线 , 通过、h和2的大小关系,分别确定了最大值和最小值,进而求出y的取值范围;
②小军同学画出如图的函数图象,通过观察图象确定了y的取值范围;请你根据上述两名同学的分析写出y的取值范围是 ;
【类比分析】
(2)张老师发现两名同学分别从“数”和“形”的角度分析、解决问题,为了让同学们更好感悟“数形结合”思想,张老师将前面问题变式为下面问题,请你解答:已知二次函数 , 当时,求y的取值范围;
【学以致用】
(3)已知二次函数 , 当时,二次函数的最大值为 , 最小值为 , 若 , 求a的值.