当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

三角形的内切圆与内心—浙教版数学九(下)知识点训练

更新时间:2024-12-01 浏览次数:2 类型:复习试卷
一、基础夯实
二、能力提升
三、拓展创新
  • 17. (2023九上·永康月考) 如图,在直角边分别为3和4的直角三角形中,每多作一条斜边上的高就增加一个三角形的内切圆,以此类推,图10中有10个直角三角形的内切圆,它们的面积分别记为S1 , S2 , S3 , …,S10 , 则S1+S2+S3+…+S10=(   )

    A . B . C . D . π
  • 18. 把圆分成等份,经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正边形.如图,的半径是 , 分别求它的外切正三角形、外切正方形、外切正六边形的边长.

  • 19. 【阅读材料】已知,如图1,在面积为S的△ABC中,BC=a,AC=b,AB=c,内切圆O的半径为r,连接OA,OB,OC,△ABC被划分为三个小三角形.

    ∵S=SOBC+SOAC+SOAB=BC•r+AC•r+AB•r=ar+br+cr=(a+b+c)r.

    ∴r=

    (1)【类比推理】如图2,若面积为S的四边形ABCD存在内切圆(与各边都相切的圆),各边长分别为AB=a,BC=b,CD=c,AD=d,求四边形的内切圆半径r的值;

    (2)【理解应用】如图3,在Rt△ABC中,内切圆O的半径为r,⊙O与△ABC各边分别相切于D、E和F,已知AD=3,BD=2,求r的值.

  • 20. (2020九上·金乡期末) 阅读以下材料,并按要求完成相应地任务:

    莱昂哈德·欧拉(Leonhard Euler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面是欧拉发现的一个定理:在△ABC中,R和r分别为外接圆和内切圆的半径,O和I分别为其外心和内心,则 .

    如图1,⊙O和⊙I分别是△ABC的外接圆和内切圆,⊙I与AB相切分于点F,设⊙O的半径为R,⊙I的半径为r,外心O(三角形三边垂直平分线的交点)与内心I(三角形三条角平分线的交点)之间的距离OI=d,则有d2=R2﹣2Rr.

    下面是该定理的证明过程(部分):

    延长AI交⊙O于点D,过点I作⊙O的直径MN,连接DM,AN.

    ∵∠D=∠N,∠DMI=∠NAI(同弧所对的圆周角相等),

    ∴△MDI∽△ANI,

    ①,

    如图2,在图1(隐去MD,AN)的基础上作⊙O的直径DE,连接BE,BD,BI,IF,

    ∵DE是⊙O的直径,∴∠DBE=90°,

    ∵⊙I与AB相切于点F,∴∠AFI=90°,

    ∴∠DBE=∠IFA,

    ∵∠BAD=∠E(同弧所对圆周角相等),

    ∴△AIF∽△EDB,

    ,∴ ②,

    任务:

    1. (1) 观察发现: (用含R,d的代数式表示);
    2. (2) 请判断BD和ID的数量关系,并说明理由;
    3. (3) 请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;
    4. (4) 应用:若△ABC的外接圆的半径为5cm,内切圆的半径为2cm,则△ABC的外心与内心之间的距离为cm.

微信扫码预览、分享更方便

试卷信息