当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省杭州市西湖区2024-2025学年上学期九年级数学期...

更新时间:2024-12-28 浏览次数:1 类型:期末考试
一、选择题:本大题有10个小题,每小题3分,共30分.
二、填空题:本大题有6个小题,每小题4分,共24分.
三、解答题:本大题有8个小题,共66分.解答应写出文字说明、证明过程或演算步骤.
  • 17. (2024九上·西湖期末) 按要求解答下列各题
    1. (1) 计算:
    2. (2) 已知 , 求的值.
  • 18. (2024九上·西湖期末) 如图,在△ABC中,D为AC边上一点,∠DBC=∠A.

    (1)求证:△BDC∽△ABC;

    (2)如果BC= , AC=3,求CD的长.

  • 19. (2024九上·西湖期末) 某学校在推进新课改的过程中,开设的体育社团活动课有:A:篮球,B:足球,C:排球,D:羽毛球,E:乒乓球,学生可根据自己的爱好选修一门,学校李老师对某班全班同学的选课情况进行调查统计,制成了如图所示的两幅不完整的统计图.

    1. (1) 则该班的总人数为______人,其中学生选D“羽毛球”所在扇形的圆心角的度数是______度;
    2. (2) 补全条形统计图;
    3. (3) 该班班委4人中,2人选修篮球,1人选修足球,1人选修排球,李老师要从这4人中选2人了解他们对体育社团活动课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.
  • 20. (2024九上·浙江期末) 如图1,是一款手机支架图片,由底座、支撑板和托板构成.图2是其侧面结构示意图,量得托板长 , 支撑板长 , 底座长 , 托板AB连接在支撑板顶端点C处,且 , 托板可绕点C转动,支撑板可绕D点转动.如图2,若 . (参考数值)

       

    1. (1) 求点C到直线的距离(精确到0.1cm);
    2. (2) 求点A到直线的距离(精确到0.1cm).
  • 21. (2024九上·西湖期末) 如图,在正五边形中,连结于点F

    1. (1) 求的度数.
    2. (2) 已知 , 求的长.
  • 22. (2024九上·平凉期中) 如图,已知抛物线y=﹣+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A(﹣2,0).

    (1)求抛物线的解析式及它的对称轴方程;

    (2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式;

    (3)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.

  • 23. (2024九上·浙江期末) 某校数学活动小组在一次活动中,对一个数学问题作如下探究:

    1. (1) 问题发现:如图1,在等边中,点P是边上任意一点,连接AP,以为边作等边 , 连接的数量关系是             
    2. (2) 变式探究:如图2,在等腰中, , 点P是边上任意一点,以为腰作等腰 , 使 , 连接 , 判断的数量关系,并说明理由;
    3. (3) 解决问题:如图3,在正方形中,点P是边上一点,以为边作正方形 , Q是正方形的中心,连接 . 若正方形的边长为5, , 求正方形的边长.
  • 24. (2023九上·宁波期末) 如图,⊙O是四边形ABCD的外接圆,直径BD与弦AC交于点E.若∠BAC=2∠ABE.

    (1)求证:AB=AC;

    (2)当是等腰三角形时,求∠BCE的大小.

    (3)当AE=4,CE=6时,求边BC的长.

微信扫码预览、分享更方便

试卷信息