当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

北京市丰台区2016-2017学年八年级下学期数学期末考试试...

更新时间:2018-05-11 浏览次数:654 类型:期末考试
一、单选题
二、填空题
三、解答题
  • 18. (2019九上·台江期中) 在平面直角坐标系xOy中,已知一次函数 的图象与x轴交于点 ,与 轴交于点

    1. (1) 求 两点的坐标;
    2. (2) 在给定的坐标系中画出该函数的图象;
    3. (3) 点M 1,y1),N(3,y2)在该函数的图象上,比较y1y2的大小.
  • 19. (2017八下·丰台期末) 已知:如图,EFABCD 的对角线BD上的两点,且BE=DF . 求证:AE∥CF

  • 20. (2017八下·丰台期末) 阅读下列材料:

    为引导学生广泛阅读古今文学名著,某校开展了读书月活动. 学生会随机调查了部分学生平均每周阅读时间的情况,整理并绘制了如下的统计图表:

    请根据以上信息,解答下列问题:

    1. (1) 在频数分布表中,a = b =
    2. (2) 补全频数分布直方图;
    3. (3) 如果该校有1 600名学生,请你估计该校平均每周阅读时间不少于6小时的学生大约有人.
  • 21. (2017八下·丰台期末) “在线教育”指的是通过应用信息科技和互联网技术进行内容传播和快速学习的方法.“互联网+”时代,中国的在线教育得到迅猛发展. 请根据下面张老师与记者的对话内容,求2014年到2016年中国在线教育市场产值的年平均增长率.

  • 22. (2017八下·丰台期末) 如图,在四边形 中, ,我们把这种两组邻边分别相等的四边形叫做筝形.

    根据学习平行四边形性质的经验,小文对筝形的性质进行了探究.

    1. (1) 小文根据筝形的定义得到筝形边的性质是
    2. (2) 小文通过观察、实验、猜想、证明得到筝形角的性质是“筝形有一组对角相等”.

      请你帮他将证明过程补充完整.

      已知:如图,在筝形 中, .

      求证:∠B=∠D

    3. (3) 小文连接筝形的两条对角线,探究得到筝形对角线的性质是(写出一条即可)
  • 23. (2017八下·丰台期末) 已知关于x的一元二次方程
    1. (1) 求证:此方程有两个不相等的实数根;
    2. (2) 选择一个m的值,并求出此时方程的根.
  • 24. (2017八下·丰台期末) 小明租用共享单车从家出发,匀速骑行到相距2 400米的邮局办事. 小明出发的同时,他的爸爸以每分钟96米的速度从邮局沿同一条道路步行回家,小明在邮局停留了2分钟后沿原路按原速返回. 设他们出发后经过t(分)时,小明与家之间的距离为s1(米),小明爸爸与家之间的距离为s2(米),图中折线OABD,线段EF分别表示s1 , s2t之间的函数关系的图象.


    1. (1) 求s2t之间的函数表达式;
    2. (2) 小明从家出发,经过多长时间在返回途中追上爸爸?
  • 25. (2017八下·丰台期末) 已知:如图,正方形ABCD中,点F是对角线BD上的一个动点.

    1. (1) 如图1,连接AFCF , 直接写出AFCF的数量关系;
    2. (2) 如图2,点EAD边的中点,当点F运动到线段EC上时,连接AFBE相交于点O.

      ①请你根据题意在图2中补全图形;②猜想AFBE的位置关系,并写出证明此猜想的思路;③如果正方形的边长为2,直接写出AO的长.

  • 26. (2017八下·丰台期末) 在平面直角坐标系xOy中,如果点A , 点C为某个菱形的一组对角的顶点,且点AC在直线y = x上,那么称该菱形为点AC的“极好菱形”. 下图为点AC的“极好菱形”的一个示意图.已知点M的坐标为(1,1),点P的坐标为(3,3).

    1. (1) 点E(2,1),F(1,3),G(4,0)中,能够成为点MP的“极好菱形”的顶点的是
    2. (2) 如果四边形MNPQ是点MP的“极好菱形”.

      ①当点N的坐标为(3,1)时,求四边形MNPQ的面积;②当四边形MNPQ的面积为8,且与直线y = x + b有公共点时,写出b的取值范围.

微信扫码预览、分享更方便

试卷信息