当前位置: 初中数学 /中考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

2018年浙江省义乌市中考数学冲刺模拟卷(1)

更新时间:2018-05-24 浏览次数:486 类型:中考模拟
一、选择题
二、填空题
三、解答题
  • 17. (2017七下·江阴期中) 先化简,再求值(x﹣2)2+2(x+2)(x+4)﹣(x﹣3)(x+3);其中x=﹣1.

  • 18. (2017·通辽)

    某校举办了一次成语知识竞赛,满分10分,学生得分均为整数,成绩达到6分及6分以上为合格,达到9分或10分为优秀,这次竞赛中,甲、乙两组学生成绩分布的折线统计图和成绩统计分析表如图所示.

    1. (1) 求出下列成绩统计分析表中a,b的值:

      组别

      平均分

      中位数

      方差

      合格率

      优秀率

      甲组

      6.8

      a

      3.76

      90%

      30%

      乙组

      b

      7.5

      1.96

      80%

      20%

    2. (2) 小英同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上面表格判断,小英是甲、乙哪个组的学生;

    3. (3) 甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你写出两条支持乙组同学观点的理由.

  • 19.

    如图,四边形ABCD是正方形,点E,F分别在BC,AB上,点M在BA的延长线上,且CE=BF=AM,过点M,E分别作NM⊥DM,NE⊥DE交于N,连接NF.

    (1)求证:DE⊥DM;

    (2)猜想并写出四边形CENF是怎样的特殊四边形,并证明你的猜想.

     

  • 20. (2021八下·北票期中)

    如图,△ABC是等腰三角形,AB=AC,请你用尺规作图将△ABC分成两个全等的三角形,并说明这两个三角形全等的理由.(保留作图痕迹,不写作法)

  • 21. (2017·北京) 如图,P是AB所对弦AB上一动点,过点P作PM⊥AB交AB于点M,连接MB,过点P作PN⊥MB于点N.已知AB=6cm,设A、P两点间的距离为xcm,P、N两点间的距离为ycm.(当点P与点A或点B重合时,y的值为0)

    小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.

    下面是小东的探究过程,请补充完整:

    1. (1) 通过取点、画图、测量,得到了x与y的几组值,如下表:

      x/cm

      0

      1

      2

      3

      4

      5

      6

      y/cm

      0

      2.0

      2.3

      2.1

      0.9

      0

      (说明:补全表格时相关数值保留一位小数)

    2. (2) 建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.

    3. (3) 结合画出的函数图象,解决问题:当△PAN为等腰三角形时,AP的长度约为cm.
  • 22. (2016·龙东) 某中学开学初到商场购买A、B两种品牌的足球,购买A种品牌的足球50个,B种品牌的足球25个,共花费4500元,已知购买一个B种品牌的足球比购买一个A钟品牌的足球多花30元.
    1. (1) 求购买一个A种品牌、一个B种品牌的足球各需多少元.
    2. (2) 学校为了响应习总书记“足球进校园”的号召,决定再次购进A、B两种品牌足球共50个,正好赶上商场对商品价格进行调整,A品牌足球售价比第一次购买时提高4元,B品牌足球按第一次购买时售价的9折出售,如果学校此次购买A、B两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的B种品牌足球不少于23个,则这次学校有哪几种购买方案?
    3. (3) 请你求出学校在第二次购买活动中最多需要多少资金?
  • 23. (2018·广州模拟) 如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(5,0)两点,直线 与y轴交于点C,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.

    1. (1) 求抛物线的解析式;
    2. (2) 若PE=5EF,求m的值;
    3. (3) 若点E′ 是点E关于直线PC的对称点(E与C不重合),是否存在点P,使点E′ 落在y轴上?若存在,请求出相应的点P的坐标;若不存在,请说明理由.
  • 24. (2017·通州模拟) 我们规定:平面内点A到图形G上各个点的距离的最小值称为该点到这个图形的最小距离d,点A到图形G上各个点的距离的最大值称为该点到这个图形的最大距离D,定义点A到图形G的距离跨度为R=D﹣d.

    1. (1) ①如图1,在平面直角坐标系xOy中,图形G1为以O为圆心,2为半径的圆,直接写出以下各点到图形G1的距离跨度:

      A(1,0)的距离跨度

      B(﹣ )的距离跨度

      C(﹣3,﹣2)的距离跨度

      ②根据①中的结果,猜想到图形G1的距离跨度为2的所有的点组成的图形的形状是

    2. (2) 如图2,在平面直角坐标系xOy中,图形G2为以D(﹣1,0)为圆心,2为半径的圆,直线y=k(x﹣1)上存在到G2的距离跨度为2的点,求k的取值范围.

    3. (3) 如图3,在平面直角坐标系xOy中,射线OP:y= x(x≥0),⊙E是以3为半径的圆,且圆心E在x轴上运动,若射线OP上存在点到⊙E的距离跨度为2,直接写出圆心E的横坐标xE的取值范围

微信扫码预览、分享更方便

试卷信息