(1.)已知等比数列{an},则“数列{an}单调递增”是“数列{an}的公比q>1”的充分不必要条件;
(2.)二项式 的展开式按一定次序排列,则无理项互不相邻的概率是 ;
(3.)已知 ,则 ;
(4.)为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为40.
则下列函数:
①f(x)=x+ (x>0);
②f(x)=lnx(0<x<3);
③f(x)=2sinx;
④f(x)= .
其中为“柯西函数”的个数为( )
(Ⅰ)若b+c=5,求b,c的值;
(Ⅱ)若 ,求△ABC面积的最大值.
与教育有关 | 与教育无关 | 合计 | |
男 | 30 | 10 | 40 |
女 | 35 | 5 | 40 |
合计 | 65 | 15 | 80 |
参考公式: (n=a+b+c+d).
附表:
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.023 | 6.635 |
(I)已知M为线段B1A1上的点,且B1A1=4B1M,求证:EM∥面A1FC;
(II)若二面角E﹣A1C﹣F所成角的余弦值为 ,求AA1的值.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)过原点O作l1的平行线l2交椭圆于C,D两点,设|AB|=λ|CD|,求λ的最小值.