当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

浙江省上虞市实验中学2019届九年级上学期数学10月月考试卷

更新时间:2018-12-06 浏览次数:477 类型:月考试卷
一、 选择题
二、填空题
三、解答题
  • 17. (2018九上·上虞月考) 根据下列条件,分别求二次函数的表达式
    1. (1) 已知函数的顶点坐标(-1,-8),且过点(0,-6)
    2. (2) 已知图象经过点(3,0),(2,-3),并以直线x=0为对称轴
  • 18. (2018九上·上虞月考) 已知函数y=-x2+mx+m+1(其中m为常数)
    1. (1) 该函数的图象与X轴公共点的个数是
    2. (2) 若该函数的图象的对称轴是直线X=1,顶点为点A,求此时函数的解析式及点的坐标
  • 19. (2018九上·上虞月考) 阅读对话,解答问题.

    1. (1) 分别用a、b表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(a,b)的所有取值;
    2. (2) 求点(a,b)在一次函数y=x-1图象上的概率
  • 20. (2018九上·上虞月考) 如图抛物线y=ax2+bx+c经过直线y=x-3与坐标轴的两个交点A,B,此抛物线与X轴的另一个交点为C,抛物线的顶点为D

    1. (1) 求此抛物线的解析式;
    2. (2) 求四边形ACBD的面积。
  • 21. (2018九上·上虞月考) 某水果店出售一种水果,每个定价20元时,每天可卖出300只。试销发现,每个水果每降价1元,每天可多卖出25只,设降价x元,收入为y元。
    1. (1) 当降价为5元时,每天可以卖出多少只;
    2. (2) 当x多少时?每天收入为6300元
    3. (3) 当x多少时?每天收入y最多,y最多为多少元。
  • 22. (2023九上·诸暨期末) 某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系.

    1. (1) 求水柱所在抛物线(第一象限部分)的函数表达式;
    2. (2) 王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?
    3. (3) 经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.
  • 23. (2018九上·上虞月考) 在平面直角坐标系中,二次函数y=x2+ax+2a+1的图象经过点M(2,-3)。

    1. (1) 求二次函数的表达式;
    2. (2) 若一次函数y=kx+b(k≠0)的图象与二次函数y=x2+ax+2a+1的图象经过x轴上同一点,探究实数k,b满足的关系式;
    3. (3) 将二次函数y=x2+ax+2a+1的图象向右平移2个单位,若点P(x0,m)和Q(2,n)在平移后的图象上,且m>n,结合图象求x0的取值范围.
  • 24. (2018九上·上虞月考) 如图,点P为抛物线y= 上一动点

    1. (1) 若抛物线y= 是由抛物线y= 通过图象平移得到的,请写出平移的过程;
    2. (2) 若直线l经过y轴上一点N,且平行于x轴,点N的坐标为(0,-1),过点P作PM⊥l于M.

      ①问题探究:如图一,在对称轴上是否存在一定点F,使得PM=PF恒成立?若存在,求出点F的坐标:若不存在,请说明理由.

      ②问题解决:如图二,若点Q的坐标为(1,5),求QP+PF的最小值.

微信扫码预览、分享更方便

试卷信息