当前位置: 初中数学 /备考专区
试卷结构: 课后作业 日常测验 标准考试
| 显示答案解析 | 全部加入试题篮 | 平行组卷 试卷细目表 发布测评 在线自测 试卷分析 收藏试卷 试卷分享
下载试卷 下载答题卡

江苏省如皋初级中学2019届九年级上学期数学期中考试试卷

更新时间:2024-07-31 浏览次数:392 类型:期中考试
一、单选题
二、填空题
三、解答题
  • 19. (2018九上·根河月考) 如图,在单位长度为1的正方形网格中建立一直角坐标系,一条圆弧经过网格点A、B、C,完成下列问题:

    1. (1) 在图中标出圆心D,则圆心D点的坐标为
    2. (2) 连接AD、CD,则∠ADC的度数为
    3. (3) 若扇形DAC是一个圆锥的侧面展开图,求该圆锥底面半径.
  • 20. (2021九上·肃州期末) 如图,抛物线与直线y=x+3分别交于x轴和y轴上同一点,交点分别是点A和点C,且抛物线的对称轴为x=﹣2.

    1. (1) 求出抛物线与x轴的两个交点A、B的坐标.
    2. (2) 求出该抛物线的解析式.
  • 21. (2018九上·江苏期中) 已知A(n,-2),B(1,4)是一次函数y=kx+b的图象和反比例函数y= 的图象的两个交点,直线AB与y轴交于点C.

    1. (1) 求反比例函数和一次函数的关系式;
    2. (2) 求△AOC的面积;
    3. (3) 结合图象直接写出不等式kx+b< 的解集.
  • 22. (2018九上·江苏期中) 如图,在▱ABCD中,AD=6,AB=10,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE.

    1. (1) 求弧DE的长;
    2. (2) 求阴影部分的面积.
  • 23. (2018九上·江苏期中) 如图,已知直线l与⊙O相离,OA⊥l于点A,交⊙O于点P,点B是⊙O 上一点,AB是⊙O的切线,连接BP并延长,交直线l于点C.

    1. (1) 求证AB=AC;
    2. (2) 若PC= ,OA=15,求⊙O的半径的长.
  • 24. (2018九上·江苏期中) 如图,在平面直角坐标系中,已知四边形ABCD为菱形,且A(0,3)、B(﹣4,0).

    1. (1) 求经过点C的反比例函数的解析式;
    2. (2) 设P是(1)中所求函数图象上一点,以P、O、A顶点的三角形的面积与△COD的面积相等.求点P的坐标.
  • 25. (2022九上·浦江期中) 如图,在平面直角坐标系xOy中,点O为坐标原点,正方形OABC的边OA,OC分别在x轴,y轴上,点B的坐标为(4,4),反比例函数 的图象经过线段BC的中点D,交正方形OABC的另一边AB于点E.

    1. (1) 求k的值;
    2. (2) 如图①,若点P是x轴上的动点,连接PE,PD,DE,当△DEP的周长最短时,求点P的坐标;
    3. (3) 如图②,若点Q(x,y)在该反比例函数图象上运动(不与D重合),过点Q作QM⊥y轴,垂足为M,作QN⊥BC所在直线,垂足为N,记四边形CMQN的面积为S,求S关于x的函数关系式,并写出x的取值范围.
  • 26. (2018九上·江苏期中) 某大学生利用暑假40天社会实践参与了一家网店经营,了解到一种成本为20元/件的新型商品在第x天销售的相关信息如下表所示.

    销售量p(件)

    P=50—x

    销售单价q(元/件)

    当1≤x≤20时,q=30+ x;

    当21≤x≤40时,q=20+

    1. (1) 求该网店第x天获得的利润y关于x的函数关系式;
    2. (2) 这40天中该网店第几天获得的利润最大?最大利润是多少?
  • 27. (2018九上·江苏期中) 如图,点P是反比例函数 上第一象限上一个动点,点A、点B为坐标轴上的点,A(0,k),B(k,0).已知△OAB的面积为

    1. (1) 求k的值;
    2. (2) 连接PA、PB、AB,设△PAB的面积为S,点P的横坐标为t.请直接写出S与t的函数关系式;
    3. (3) 阅读下面的材料回答问题:

      当a>0时,

      ≥0,∴ ≥2,即 ≥2

      由此可知:当 =0时,即a=1时, 取得最小值2.

      问题:请你根据上述材料探索(2)中△PAB的面积S有没有最小值?若有,请直接写出S的最小值;若没有,说明理由.

  • 28. (2018九上·江苏期中) 在平面直角坐标系xOy中,对于任意三点A,B,C,给出如下定义:

    若矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的外延矩形.点A,B,C的所有外延矩形中,面积最小的矩形称为点A,B,C的最佳外延矩形.例如,图中的矩形 都是点A,B,C的外延矩形,矩形 是点A,B,C的最佳外延矩形.

    1. (1) 如图1,已知A(-2,0),B(4,3),C(0, ).

      ①若 ,则点A,B,C的最佳外延矩形的面积为

      ②若点A,B,C的最佳外延矩形的面积为24,则 的值为

    2. (2) 如图2,已知点M(6,0),N(0,8).P( )是抛物线 上一点,求点M,N,P的最佳外延矩形面积的最小值,以及此时点P的横坐标 的取值范围;
    3. (3) 如图3,已知点D(1,1).E( )是函数 的图象上一点,矩形OFEG是点O,D,E的一个面积最小的最佳外延矩形,⊙H是矩形OFEG的外接圆,请直接写出⊙H的半径r的取值范围.

微信扫码预览、分享更方便

试卷信息